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Historical Introduction
• Space-time duality was noted in the 1960s by Tournois and Akhmanov:

P. Tournois, C. R. Acad. Sci. 258, 3839–3842 (1964)

S. A. Akhmanov et al., Sov. Phys. JETP 28, 748–757 (1969).

• Temporal imaging with a time lens was first discussed in 1989:

B. H. Kolner and M. Nazarathy, Opt. Lett. 14, 630–632 (1989)

B. H. Kolner, IEEE J. Quantum Electron. 130, 1951–1963 (1994).

• Recent work has focused on applications such as “time microscope” and

temporal clocking:

D. H. Broaddus et al., Opt. Express 18, 14262–14269 (2010)

M. Fridman et al., Nature 481, 62–65 (2012).

• Application of space-time duality to optical signal processing are discussed

in a recent review by Alex Gaeta’s group:

R. Salem et al., Adv. Opt. Photon. 5, 274–317 (2013).



What is Space–Time Duality?
• It results from a mathematical equivalence between paraxial-beam

diffraction and dispersive pulse broadening.

• Diffraction in one transverse dimension is governed by

∂A
∂ z

+
1

2ik
∂ 2A
∂x2 = 0.

• If we neglect higher-order dispersion, pulse evolution is governed by

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = 0.

• Slit-diffraction problem is identical to a pulse propagation problem.

• The only difference is that β2 can be positive or negative.

• Many results from diffraction theory can be used for pulses.



Concept of a Time Lens

• A lens imposes a quadratic spatial phase shift of the form

Aout(x) = Ain(x)exp
(
− ikx2

2 f

)
.

• A time lens must do the same thing in the time domain:

Aout(t) = Ain(t)exp
(
− it2

2D f

)
.

• D f depends on parameters of the device used to make the time lens.



Phase Modulator as a Time Lens

• A simple way to impose phase shifts is to use an optical phase modulator.

• In the case of sinusoidal modulation at frequency ωm, we have

Aout(t) = Ain(t)exp[iφ0 cos(ωmt)].

• If optical pulse is much shorter than one modulation cycle, we can use

Aout(t)≈ Ain(t)exp[iφ0(1−ω
2
mt2/2)].

• In this case D f = (φ0ω2
m)
−1. Its value can be controlled by changing the

amplitude and/or frequency of phase modulation.



Techniques for Making a Time Lens

• A quadratic phase shift is equivalent to a linear frequency chirp:

∆ω(t) =−(dφ/dt) = t/D f .

• Any technique that impose a linear chirp on the pulse can be used to make

a time lens.

• Many nonlinear techniques can provide a nearly linear frequency chirp.

• Cross-phase modulation by a parabolic pump pulse inside an optical fiber

appears to be one possibility.

• Even the use of Gaussian pump pulses in the normal-dispersion region of

optical fibers can produce a linear chirp through optical wave breaking.

• Four-wave mixing inside a silicon waveguide, or an optical fiber, has been

used in several recent experiments.



Focusing by a Time Lens

R. Salem et al., Adv. Opt. Photon. 5, 274–317 (2013)



Temporal Focusing and Imaging

• A time lens, followed by a dispersive medium of suitable length, can com-

press optical pulses through temporal focusing.

• A temporal imaging system requires two dispersive sections.

• It can be used to make a time microscope that magnifies optical pulses.

• The imaging condition for a time lens is found to be

1
D1

+
1

D2
=

1
D f

, Dn = β2nLn, D f =
1

φ0ω2
m
.

• D f is called the focal GDD (Group Delay Dispersion) of a time lens.



Temporal Fourier Transform

R. Salem et al., Adv. Opt. Photon. 5, 274–317 (2013)



Temporal 4-f Processor

R. Salem et al., Adv. Opt. Photon. 5, 274–317 (2013)



Temporal Microscope

R. Salem et al., Adv. Opt. Photon. 5, 274–317 (2013)



Temporal Telescope

R. Salem et al., Adv. Opt. Photon. 5, 274–317 (2013)



Modulator-Induced Spectral Changes
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• For this configuration, the input and output spectra are related as

Ao(ω) =
1

2π

∫∫
Ai(ω

′)exp(iβ2Lω
′2/2)eiφm(t)ei(ω−ω ′)tdω

′dt.

• When peak of the pulse does not coincide with the modulation peak,

φm(t) = φ0 cos(ωmt−θ)≈ φ0[cosθ −ωmt sinθ −ω
2
mt2 cosθ/2]

• The linear term produces a spectral shift; it vanishes for θ = mπ .

• The quadratic term chirps the pulse; it vanishes for θ = mπ/2.



Numerical Results
• Output spectra versus θ :

(a) 1.5 ps Gaussian pulses.

(b) 20 ps Gaussian pulses.

• Modulation frequency 10 GHz;

φ0 = 30 rad (D f = 8.44 ps2);

Time aperture 1/ωm = 16 ps.

• Spectrum is narrowest for θ = 0; it

shifts and broadens as θ increases.

Reverse spectral changes occur after

θ = π .

• Considerable distortions occur for

pulses broader than the aperture of

time lens.



Experimental Results

Experimental setup

Plansinis et al., JOSA B 32 (August 2015)



Modulator-Induced Spectral Changes

• Experiment on left

• Theory on right

• Blue: Output spectrum

• Purple: Input spectrum

• Top: θ = 0

• Middle: θ = π/2

• Bottom: θ = π

Plansinis et al., JOSA B 32 (August 2015)



Temporal Reflection and Refraction

• Reflection and refraction of optical

beams at a spatial boundary are well-

known phenomena.

• What is the temporal analog of these

two optical phenomena?

• What happens when an optical pulse arrives at a temporal boundary across

which refractive index changes suddenly?

• At a spatial boundary, energy is preserved but momentum can change.

• At a temporal boundary, momentum is preserved but frequency can change.

• A change in angle at a spatial interface translates into a change in the

frequency of incident light.



Space–Time Duality

• Comparison of reflection and refraction in space and time

• Frequency conserved but wave vector changes in the spatial case.

• Wave vector conserved but frequency changes in the temporal case.



Simple Model of Pulse Propagation

• Let us assume that an optical pulse is propagating inside a waveguide with

the dispersion relation β (ω)

• Temporal discontinuity at t = TB is incorporated by using

β (ω) = β0+∆β1(ω−ω0)+
β2

2
(ω−ω0)

2+βBH(t−TB).

• ∆β1 = β1−β1B is pulse’s relative speed relative to the temporal boundary

located at t = TB.

• βB = k0∆n, if refractive index changes by ∆n for t > TB; H(x) is the Heav-

iside function.

• This dispersion relation can be used to investigate changes in pulse’s shape

and spectrum occurring after the pulse arrives at the boundary.



Pulse Propagation
• Slowly varying envelope of the pulse satisfies

∂A
∂ z

+∆β1
∂A
∂ t

+
iβ2

2
∂ 2A
∂ t2 = iβBH(t−TB)A.

• Using τ = t/T0 and ξ = z/LD (LD = T 2
0 /|β2|), the normalized form be-

comes
∂A
∂ξ

+d
∂A
∂τ

+
ib2

2
∂ 2A
∂ t2 = iβBLDH(τ−TB/T0)A.

• Numerical results obtained for Gaussian pulses with the temporal boundary

at TB = 5T0 using βBLD = 100 and d = ∆β1LD/T0 = 20.

• Pulses reaches the boundary at a distance of z = LD/4.

• Temporal evolution of the pulse shows a clear evidence of both the reflection

and refraction at the boundary.



Temporal Reflection and Refraction

Plansinis et al., PRL (submitted).



Spectrograms for 8-ps Gaussian pulses



Momentum Conservation

• Momentum conservation explains

all results:

? Blue curve for t < TB

? Green curve for t > TB

? Red region: pulse spectrum

• Possible solutions marked

• Reflection corresponds to solution (3) on the blue curve.

• Refraction corresponds to solution (1) on the blue curve.

• Solution (2) is not physical since its slope is opposite to that of (1).

• Both reflection and refraction manifest as red-shifted pulses; blue shifts

occur if β2 or ∆n is negative.



Spectral Shift of Reflected Pulse

• Momentum is related to β (ω) given by

β (ω) = β0+∆β1(ω−ω0)+
β2

2
(ω−ω0)

2+βBH(t−TB).

• For ω = ω0, we need to maintain β = β0, resulting in

∆β1(ω−ω0)+
β2

2
(ω−ω0)

2+βBH(t−TB) = 0.

• Reflected pulse is confined to the region t < TB. The only solution is

ωr = ω0−2(∆β1/β2).

• The sign and magnitude of the spectral shift of the reflected pulse depend

on values of ∆β1 and β2.



Spectral Shift of Refracted Pulse
• We need to satisfy the phase-matching condition:

∆β1(ω−ω0)+
β2

2
(ω−ω0)

2+βBH(t−TB) = 0.

• Refracted pulse propagates to the region t > TB where H(t−TB) = 1. The

quadratic equation has the solutions

ωt = ω0+
∆β1

β2

(
−1±

√
1− 2βBβ2

(∆β1)2

)
.

• Only + sign corresponds to the physical solution. In the limit ∆β1 �√
βBβ2, it can be approximated as ωt = ω0− (βB/∆β1).

• The sign and magnitude of the spectral shift of the refracted pulse depend

on values of ∆β1, β2, and βB.



Total Internal Reflection
• Total internal reflection (TIR) can occur in the spatial case when an optical

beam enters from a high-index medium to low-index medium (∆n < 0).

• The condition for its occurrence is obtained from Snel’s law,

n1 sinθ1 = n2 sinθ2, by setting θ2 = 90◦.

• We don’t have such a simple law for temporal TIR.

• One way to find the condition for TIR is to see when the spectral shift of

the refracted pulse becomes unphysical:

ωt = ω0+
∆β1

β2

(√
1− 2βBβ2

(∆β1)2 −1

)
.

• This condition is clearly 2βBβ2 > (∆β1)
2. TIR occurs only if βB and β2

have the same signs.



Total Internal Reflection

• Temporal TIR is not restricted to the situation ∆n < 0.

• Using βB = k0∆n, we can write the condition for TIR as

β2∆n > (∆β1)
2/2k0.

• When ∆n> 0, the pulse needs to propagate in the normal-dispersion region.

• In contrast, the pulse must propagate in the anomalous-dispersion region

when ∆n < 0.

• This freedom is a consequence of the fact that dispersion term can be

positive or negative whereas the diffraction term has only one sign.

• The requirement ∆n > (∆β1)
2/(2k0β2) can be satisfied in practice even for

∆n∼ 10−4.



TIR of Gaussian Pulses

• Evolution of a Gaussian pulse

(a) Temporal evolution

(b) Spectral evolution

• Temporal boundary located at

TB = 5T0.

• Index change was large enough

(βBLD = 320) to satisfy the TIR

condition.

• Entire pulse energy reflected at

the temporal boundary

• Spectrum shifted toward the red

side during TIR if ∆n > 0.



Spectrograms for 8-ps Gaussian pulses



Effects of Third-Order Dispersion

• Third-order dispersion (TOD) leads to distortions in temporal imaging.

• In the case of temporal reflection, TOD can lead to two reflected pulses.

• The phase-matching condition now becomes a cubic polynomial:

∆β1(ω−ω0)+
β2

2
(ω−ω0)

2+
β3

6
(ω−ω0)

3+βBH(t−TB) = 0.



Double Refraction



Double Reflection



Temporal Waveguides

• TIR can be used to make temporal

waveguides that trap optical pulses.

• Two temporal boundaries are needed.

• Central region can have lower or

higher refractive index.

• Modes of a temporal waveguide are similar to those of spatial waveguides.

• A pulse can remain trapped inside the waveguide if it undergoes TIR at

both temporal boundaries.

• This technique has the potential of creating pulses that remain confined to

a fixed time window.



Pulse Trapping

• A 8-ps Gaussian pulse (T0 = 5) trapped in-

side a 20-ps wide waveguide:

∆β1 = 50 ps/km, β2 = 25 ps2/km,

βB = 90 km−1

• Pulse undergoes TIR and its spectrum shifts

after each reflection.

• Pulse broadening eventually creates distor-

tions and the pulse excites several modes of

a multimode waveguide (V = 26.8).

• This approach can work only when T0� TB

and z� LD. It is better to design a single-

mode temporal waveguide.



Single-Mode Waveguide

T0 = 10 ps T0 = 5 ps



Conclusions
• Space–time duality is a simple concept with many applications.

• It can be used to stretch and compress optical pulses.

• It can be used for temporal imaging and making time microscopes.

• A phase modulator acting as a time lens can lead to spectral changes.

• Temporal equivalent of reflection and refraction occurs for optical pulses

at a temporal boundary.

• In the temporal case, frequency plays the role of angles.

• We have identified conditions under which a pulse undergoes total internal

reflection and studied the effects of higher-order dispersion.

• The TIR phenomenon can be used to trap pulses within a fixed time window

(temporal wave-guiding).


