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Historical Introduction

e Space-time duality was noted in the 1960s by Tournois and Akhmanov:
P. Tournois, C. R. Acad. Sci. 258, 3839-3842 (1964)
S. A. Akhmanov et al., Sov. Phys. JETP 28, 748-757 (1969).

e Temporal imaging with a time lens was first discussed in 19809:
B. H. Kolner and M. Nazarathy, Opt. Lett. 14, 630-632 (1989)
B. H. Kolner, IEEE J. Quantum Electron. 130, 1951-1963 (1994).

e Recent work has focused on applications such as “time microscope” and
temporal clocking:
D. H. Broaddus et al., Opt. Express 18, 14262-14269 (2010)
M. Fridman et al., Nature 481, 62-65 (2012).

e Application of space-time duality to optical signal processing are discussed
in a recent review by Alex Gaeta's group:

R. Salem et al., Adv. Opt. Photon. 5, 274-317 (2013).
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What is Space—Time Duality?

e It results from a mathematical equivalence between paraxial-beam

diffraction and dispersive pulse broadening.

e Diffraction in one transverse dimension is governed by

dA 1 0%A
+ — =0.
dz  2ik dx?
e If we neglect higher-order dispersion, pulse evolution is governed by
0A if,0%A
LA,
dz 2 dt?

e Slit-diffraction problem is identical to a pulse propagation problem.
e The only difference is that 3, can be positive or negative.

e Many results from diffraction theory can be used for pulses.
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Concept of a Time Lens

ST D

e A lens imposes a quadratic spatial phase shift of the form
ikx?

Agut(x) = Ain(x) exp < _ —) .

e A time lens must do the same thing in the time domain:

it?
Aout(t) = A () exp ( — 2—Df) .

e D/ depends on parameters of the device used to make the time lens.
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Phase Modulator as a Time Lens
Input carrier wave /. | \_,/}”-\J } | Output PM wave

{\/\/\N\/\/\/\/\/\][ E Electro-Optic Material E W\/\]W\/

e A simple way to impose phase shifts is to use an optical phase modulator.

e In the case of sinusoidal modulation at frequency ,,, we have
Aout(t) = Ain(t) expligg cos(@,t)].
e If optical pulse is much shorter than one modulation cycle, we can use
Aou(t) = Ain(t) expligo(1 — w3t*/2)].

e In this case D; = (¢o®?)". Its value can be controlled by changing the
amplitude and/or frequency of phase modulation.
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Techniques for Making a Time Lens

e A quadratic phase shift is equivalent to a linear frequency chirp:
Aw(t)=—(d¢/dt) =t/Dy.

e Any technique that impose a linear chirp on the pulse can be used to make
a time lens.

e Many nonlinear techniques can provide a nearly linear frequency chirp.

e Cross-phase modulation by a parabolic pump pulse inside an optical fiber
appears to be one possibility.

e Even the use of Gaussian pump pulses in the normal-dispersion region of
optical fibers can produce a linear chirp through optical wave breaking.

e Four-wave mixing inside a silicon waveguide, or an optical fiber, has been
used in several recent experiments.
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Focusing by a Time Lens
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R. Salem et al., Adv. Opt. Photon. 5, 274-317 (2013)
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Temporal Focusing and Imaging

A[dtspersiunHﬂme lens
ultrafast magnified output

input

e A time lens, followed by a dispersive medium of suitable length, can com-
press optical pulses through temporal focusing.

e A temporal imaging system requires two dispersive sections.
e |t can be used to make a time microscope that magnifies optical pulses.

e The imaging condition for a time lens is found to be

L LY b =B, D=
D, D2_Df7 n — M2nln, f_(poa)l%1

e Dy is called the focal GDD (Group Delay Dispersion) of a time lens.
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Temporal Fourier Transform
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R. Salem et al., Adv. Opt. Photon. §, 274-317 (2013)
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Temporal 4-f Processor
Fourier plane
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(c) Fourier plane
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R. Salem et al., Adv. Opt. Photon. 5, 274-317 (2013)
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R. Salem et al., Adv. Opt. Photon. §, 274-317 (2013)
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Temporal Telescope
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R. Salem et al., Adv. Opt. Photon. 5, 274-317 (2013)



The Institute f

¥ UNIVERSITY+ROCHESTER OPTICS
Modulator-Induced Spectral Changes

Input Dispersion Modulator | OutPut
D= Df Df

e For this configuration, the input and output spectra are related as

Ay = o //A )exp(ifL /2)e el @) g dp.

e When peak of the pulse does not coincide with the modulation peak,
O (1) = Pocos(®ut — ) = @o[cos @ — @t sin @ — w*t*cos 6 /2]

e The linear term produces a spectral shift; it vanishes for 6 = m.

e The quadratic term chirps the pulse; it vanishes for 6 = mm /2.
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Numerical Results

e Qutput spectra versus 6:

(a) 1.5 ps Gaussian pulses.
(b) 20 ps Gaussian pulses. ]
e Modulation frequency 10 GHz; f
¢o =30 rad (D; = 8.44 ps?); . |
Time aperture 1/w,, = 16 ps. 0 w2 o 3m2 2n

0 (rad)
e Spectrum is narrowest for 8 = 0; it

shifts and broadens as 0 increases.

Reverse spectral changes occur after
0=m.

A-A (nm)

e Considerable distortions occur for | | |
pulses broader than the aperture of 0 w2 9(:ad) 3m2  2n
time lens.
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Experimental Results
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Plansinis et al., JOSA B 32 (August 2015)
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Modulator-Induced Spectral Changes
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Plansinis et al., JOSA B 32 (August 2015)
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e Reflection and refraction of optical
beams at a spatial boundary are well-
known phenomena.

e What is the temporal analog of these
two optical phenomena?

e What happens when an optical pulse arrives at a temporal boundary across
which refractive index changes suddenly?

e At a spatial boundary, energy is preserved but momentum can change.
e At a temporal boundary, momentum is preserved but frequency can change.

e A change in angle at a spatial interface translates into a change in the
frequency of incident light.
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Space—Time Duality

Space

Wi = W = Wy Bi = Bt = Br
6 changes at boundary w changes at boundary

e Comparison of reflection and refraction in space and time
e Frequency conserved but wave vector changes in the spatial case.

e Wave vector conserved but frequency changes in the temporal case.
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Simple Model of Pulse Propagation

e Let us assume that an optical pulse is propagating inside a waveguide with
the dispersion relation ()

e Temporal discontinuity at t = Ty is incorporated by using

p.

B(w) = Po+ABi(@w—ax)+ ( — o)+ BpH(t — Tp).

e AB; = B1 — Bip is pulse’s relative speed relative to the temporal boundary
located at t = T5.

o Bp = koAn, if refractive index changes by An for t > Tp; H(x) is the Heav-
iside function.

e This dispersion relation can be used to investigate changes in pulse’s shape
and spectrum occurring after the pulse arrives at the boundary.
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Pulse Propagation
e Slowly varying envelope of the pulse satisfies

A DA By %A

B_Z+AB1 ot + 2 dt?

e Using T=1/Ty and & = z/Lp (Lp = T3 /|B2|), the normalized form be-
comes

— iBgH (t — T)A.

JA  JA ibyd*A
5 "5t 9 = ifsLpH (T — T3/ To)A.

e Numerical results obtained for Gaussian pulses with the temporal boundary
at Tp = 5Ty using ﬁBLD = 100 and d = ABILD/TO = 20.

e Pulses reaches the boundary at a distance of z = Lp/4.

e Temporal evolution of the pulse shows a clear evidence of both the reflection
and refraction at the boundary.
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Temporal Reflection and Refraction
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Plansinis et al., PRL (submitted).
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Spectrograms for 8-ps Gaussian pulses

Gaussian Input Pulse, T, = 5ps, T; = 30 ps, AR, = 300 ps/km, B3, = 63 ps?/km
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Momentum Conservation
e Momentum conservation explains 600 77
all results: 400 ,;'
2000\ (2) | /7
* Blue curve for t < Tp > § ‘
& OPRI=C n
* Green curve for t > Tp 200| B) vacae”
* Red region: pulse spectrum 400 L. . .
-40 -20 0 20
e Possible solutions marked (w-c00) Ty

e Reflection corresponds to solution (3) on the blue curve.
e Refraction corresponds to solution (1) on the blue curve.
e Solution (2) is not physical since its slope is opposite to that of (1).

e Both reflection and refraction manifest as red-shifted pulses; blue shifts
occur if B, or An is negative.
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Spectral Shift of Reflected Pulse

e Momentum is related to (@) given by

B

plw)=Po+ABi(w—m)+ (o — a)* + BpH (1 — Tp).

e For @ = wy, we need to maintain B = B, resulting in

B

AP (0 — @) + Z-(@ — a0)” + fpH (1 — Tp) = 0.

e Reflected pulse is confined to the region t < Tg. The only solution is
= 0y —2(AB1/ ).

e The sign and magnitude of the spectral shift of the reflected pulse depend
on values of AB; and f3,.
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Spectral Shift of Refracted Pulse

e We need to satisfy the phase-matching condition:

B

ABi (o — ) + (o — y)*+ BpH (t — Tg) = 0.

e Refracted pulse propagates to the region t > Tp where H(t —Tg) = 1. The
quadratic equation has the solutions

AP 2P P>
=Wp+—7— | —1x=4/1- :
B (AB1)?
e Only + sign corresponds to the physical solution. In the limit AB; >

\/BgPa, it can be approximated as @, = wy — (Bg/AB1).

e The sign and magnitude of the spectral shift of the refracted pulse depend
on values of AB;, B>, and B;.
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Total Internal Reflection

e Total internal reflection (TIR) can occur in the spatial case when an optical
beam enters from a high-index medium to low-index medium (An < 0).

e The condition for its occurrence is obtained from Snel’s law,
nysin @, = n, sin 6,, by setting 6, = 90°.

e We don't have such a simple law for temporal TIR.

e One way to find the condition for TIR is to see when the spectral shift of
the refracted pulse becomes unphysical:

AB, 2PpP>
W = W+ —— l— —1].
t B (\/ (AB1)*
e This condition is clearly 2858, > (AB;)>. TIR occurs only if Bz and B,
have the same signs.
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Total Internal Reflection
e Temporal TIR is not restricted to the situation An < 0.

e Using Bg = koAn, we can write the condition for TIR as
BaAn > (ABy)?*/2k.

e When An > 0, the pulse needs to propagate in the normal-dispersion region.

e In contrast, the pulse must propagate in the anomalous-dispersion region
when An < 0.

e This freedom is a consequence of the fact that dispersion term can be
positive or negative whereas the diffraction term has only one sign.

e The requirement An > (AB;)?/(2koB,) can be satisfied in practice even for
An ~ 1074,
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TIR of Gaussian Pulses

e Evolution of a Gaussian pulse
(a) Temporal evolution
(b) Spectral evolution

e Temporal boundary located at
Ty = 5T,

e Index change was large enough
(BsLp = 320) to satisfy the TIR

condition.

e Entire pulse energy reflected at
the temporal boundary

e Spectrum shifted toward the red
side during TIR if An > 0.
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Spectrograms for 8-ps Gaussian pulses
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Effects of Third-Order Dispersion

e Third-order dispersion (TOD) leads to distortions in temporal imaging.
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e In the case of temporal reflection, TOD can lead to two reflected pulses.

e The phase-matching condition now becomes a cubic polynomial:

B

LB

3
ABi (o — ay) + ( ( —ay)’ + BH(t —Tp) = 0.
600 .
H 200
400 !
. H ., 100
= 200 - ! = fAnkN A
o P A & 0 N
& 0 T & ~of
~ /,f - =~ 2100
-200 {4
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-400 U : : : :
-50 0 50 -50 0 50
(CO-COO)TO (co-@O)TO
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Double Reflection
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Temporal Waveguides
e TIR can be used to make temporal
waveguides that trap optical pulses.
e Two temporal boundaries are needed.

e Central region can have lower or
higher refractive index.

e Modes of a temporal waveguide are similar to those of spatial waveguides.

e A pulse can remain trapped inside the waveguide if it undergoes TIR at

both temporal boundaries.

e This technique has the potential of creating pulses that remain confined to

a fixed time window.
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Pulse Trapping

e A 8-ps Gaussian pulse (Tp = 5) trapped in-
side a 20-ps wide waveguide:
ABy =50 ps/km, B, =25 psz/km,
BB — 90 km™!

e Pulse undergoes TIR and its spectrum shifts
after each reflection.

e Pulse broadening eventually creates distor-
tions and the pulse excites several modes of
a multimode waveguide (V = 26.8).

e This approach can work only when Ty < Tp
and z < Lp. It is better to design a single-
mode temporal waveguide.
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Conclusions

e Space—time duality is a simple concept with many applications.

e |t can be used to stretch and compress optical pulses.

e |t can be used for temporal imaging and making time microscopes.

e A phase modulator acting as a time lens can lead to spectral changes.

e Temporal equivalent of reflection and refraction occurs for optical pulses
at a temporal boundary.

e In the temporal case, frequency plays the role of angles.

e We have identified conditions under which a pulse undergoes total internal
reflection and studied the effects of higher-order dispersion.

e The TIR phenomenon can be used to trap pulses within a fixed time window
(temporal wave-guiding).



