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Historical Introduction
• Supercontinuum generation refers to the creation of extremely wide

optical spectra produced using the nonlinear effects.

• First realized in 1969 using borosilicate glass as a nonlinear medium

[Alfano and Shapiro, PRL 24, 584 (1970)].

• In this experiment, 300-nm-wide supercontinuum covered the entire

visible region, resulting in the formation of white light.

• A 20-m-long fiber was employed in 1975 to produce 180-nm wide

supercontinuum [Lin and Stolen, APL 28, 216 (1976)].

• 25-ps pulses were used in 1987 but the bandwidth was only 50 nm

[Beaud et al., JQE 23, 1938 (1987)].

• 200-nm-wide supercontinuum obtained in 1989 by launching 830-fs

pulses [Islam et al., JOSA B 6, 1149 (1989)].
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Supercontinuum History
• Supercontinuum work with optical fibers continued during the 1990s

with telecom applications in mind.

• A 200-nm-wide supercontinuum was used to produce a 200-channel

WDM source [Morioka et al., Electron. Lett. 31, 1064 (1995)].

• A dramatic change occurred in 2000 when new kinds of fibers were

used to produce a supercontinuum extending >1000 nm.

• Such fibers contain air holes in their cladding and are known as the

photonic crystal or microstructured fibers.

• They were developed after 1996 in an attempt to control the dis-

persive and nonlinear properties of silica fibers.

• Recent advances relate to improving the supercontinuum coherence

and extending the wavelength range into the mid-IR region.
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Microstructured Fibers

(Eggleton et al, Opt. Exp. 9, 698, 2001)

• A narrow core is surrounded by a silica cladding with air holes.

• Photonic crystal fibers have multiple rings of holes.

• Number of air holes varies from structure to structure.

• Hole size varies from 0.5 to 5 µm depending on the design.

• Nonlinear effects are enhanced considerably (highly nonlinear fibers).

• Useful for supercontinuum generation among other things.



5/100

JJ
II
J
I

Back

Close

Photonic Crystal Fibers

(P. St. J. Russell, Science 299, 358, 2003)
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Supercontinuum Generation

(Ranka et al., Opt. Lett. 25, 25, 2000)

• Output spectrum generated in a 75-cm section of microstructured

fiber by launching 100-fs pules with only 0.8 pJ energy.

• Supercontinuum at the fiber out extended from 400 to 1600 nm.

• It was also relatively flat over a wide bandwidth (on a log scale).

• Useful in biomedical imaging as a broadband source.
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Physics Behind SC Generation
• 100-fs input pulses propagated as high-order solitons (N > 10).

• Third-order dispersion (TOD) leads to their fission into multiple

narrower fundamental solitons: Tk = T0/(2N +1−2k).

• Each of these solitons is affected by intrapulse Raman scattering

that transfers energy from the blue side to the red side.

• Spectrum of each soliton shifts toward longer and longer wave-

lengths with propagation inside the fiber.

• At the same time, each soliton emits dispersive waves at different

wavelengths on the blue side of the input wavelength.

• Cross-phase modulation (XPM) and four-wave mixing generate ad-

ditional bandwidth to produce the observed supercontinuum.
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Numerical Modeling of Supercontinuum
• Soliton fission is studied by solving the generalized NLS equation:
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• It is important to include the dispersive effects (βm) and intrapulse

Raman scattering (through R(t)) as accurately as possible.

• Terms up to M = 8 are often included in numerical simulations.

• Raman response included through the measured gain spectrum.

• Most features observed experimentally can be understood, at least

qualitatively, by such a theory.
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Evolution of a Sixth-Order Soliton

• Temporal and spectral evolution of a N = 6 soliton over 2LD.

• Corresponding spectrogram at z = 2LD shows spectra of different

temporal slices (colors indicate different power levels).

• Multiple solitons and their dispersive waves are clearly visible.

• Temporal overlap between the two leads to new effects through

XPM and four-wave mixing.
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Supercontinuum Properties
• Supercontinuum can be generated using pulses of different widths

(from fs to ns range). Even a continuous wave (CW) can be used

to create a supercontinuum.

• Use of femtosecond pulses produce a wideband supercontinuum but

its spectral coherence is often limited.

• Modulation instability initiates the supercontinuum process for CW

light or nanosecond pulses.

• It converts CW light into a train of fundamental solitons of different

widths whose spectra shift toward the red side (no soliton fission).

• Most experiments employ anomalous dispersion that is required for

modulation instability and soliton formation.
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CW Supercontinuum Generation

Cumberland et al., Opt. Exp. 16, 5954 (2008)

• Formation of fundamental solitons (round objects) of different widths

through modulation instability.

• Spectra of solitons shift toward red (no broadening toward blue).

• Cigar-like objects at λ >1730 nm represent dispersive waves.

• FWM generates new spectral components near 1900 nm.
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High-Quality Supercontinuum
• Good coherence and noise properties of supercontinuum are critical

for biomedical and other applications.

• The use of modulation instability or soliton fission does not typically

produce a high-quality supercontinuum.

• Considerable research effort has led to novel techniques for produc-

ing a high-quality supercontinuum.

• It requires launching of pedestal-free soliton-like pulses in the normal-

dispersion region of a highly nonlinear fiber.

• Dispersion slope should be relatively small to ensure a nearly con-

stant dispersion over a broad bandwidth.

• In another approach two pulses at different wavelengths are launched

such that they propagate inside the fiber at nearly the same speed.
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SC Generation with Normal Dispersion

(Heidt et al., Opt. Exp. 19, 3775, 2011)

• 50-fs pulses were launched into a 50-cm-long PCF.

• Relatively coherent supercontinua formed in both cases.

• Such a source is suitable for many biomedical applications.
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SC with Low Noise and High Coherence

(N. Nishizawa., Opt. Fiber. Technol. 18, 394, 2012)

5-m-long fiber with:

γ = 23 W−1/km

β2 ≈ 5 ps2/km

β3 ≈ 0.005 ps3/km

Dispersion relatively flat.
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SC Generation by Two-Pulse Collision
• A new mechanism was proposed for SC generation in 2013:

Demircan et al., PRL 110, 233901, (2013).

• It makes use of collision of a soliton with a weak pulse at another

wavelength.

• Soliton propagates in the anomalous dispersion region of fiber.

• The weaker pulse propagates in the normal dispersion region such

that its speed nearly coincides with that of the soliton.

• The two pulses are separated initially, but weaker pulse spreads and

collides with the soliton.

• Cross-phase modulation creates an index barrier and generates many

dispersive waves that broaden the spectrum while maintaining its

coherence.



16/100

JJ
II
J
I

Back

Close

Spectral and Temporal Evolution

Demircan et al., PRL 110, 233901 (2013)

Top:

(a) Fiber Output

(b) ng(ω)

Middle:

Without Raman

Bottom:

With Raman included
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Spectral Coherence of Supercontinuum

Demircan et al., PRL 110, 233901, (2013)

• High coherence is predicted over a wide spectral range (left).

• Spectral coherence is limited when soliton fission is employed with

N = 15 and N = 40 (gray).
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SC Generation by Multiple Scattering
• Multiple scattering mechanism proposed for SC generation in 2014:

Demircan et al., Opt. Exp. 22, 3866 (2014).

• It makes use of XPM between a soliton and one or more weaker

pulses at different wavelengths such that they travel together.

• The pulses are separated initially but weaker pulses spread and col-

lide with the soliton.

• The XPM interaction between them creates an index barrier known

as the “group velocity horizon.”

• Multiple scattering from this barrier creates a supercontinuum that

extends from 300 to 2300 nm.

• Spectral coherence is maintained nearly over the entire bandwidth

of supercontinuum.
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Spectral and Temporal Evolution

Demircan et al., Opt. Exp. 22, 3866 (2014)

• Two weak pulses launched at 470 and 428 nm together with a

soliton at 1800 nm.

• Multiple scatterings between dispersive waves and the soliton create

a SC ranging over the whole transparency region of silica fiber.
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Spectral Coherence of Supercontinuum

Demircan et al., Opt. Exp. 22, 3866 (2014)

• Spectrum extends over a wide range from 380 nm to 2200 nm

• Spectral coherence remains high nearly over the entire range.
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Spectral Extension into UV or IR Region
• Spectral range covered by a SC depends on the pump wavelength.

• When pumped near 800 or 1060 nm, SC extends into the visible

and near-infrared (IR) regions.

• Many applications require SC sources covering the ultraviolet (UV)

or/and mid-IR regions.

• Progress has been made in recent years in both directions.

• The mid-IR region requires non-silica fibers (tellurite or chalco-

genide) and new pump sources operating in the 2-3 µm region.

• The UV region can use silica fibers but requires new designs such

as tapering of a fiber or gas-filled hollow-core PCFs).
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Narrow-Core Photonic Crystal Fibers

(Stark et al., JOSA B 27, 592, 2010)

• Experimental (a) and simulated (b) SC spectra when 523-nm pulses

were launched into a 5-cm-long PCF with 0.6-µm core diameter.

• PCF had anomalous dispersion between 500–630 nm.

• SC extended from 300–900 nm when soliton order was close to 20.

• Narrow core helps to extend the supercontinuum into the UV region.
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Tapered Photonic Crystal Fibers

(Stark et al., Opt. Lett. 37, 770, 2012)

• Experimental (a) and simulated (b) SC spectra when 110-fs pulses

were launched into a tapered PCF.

• (c) SC spectra at input pulse energies of 2 and 5 nJ.

• Core diameter tapered form 2.7 µm to 400 nm over 1.5 cm.

• Tapering helps to extend the supercontinuum into the UV region.
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Tapered PCFs (cont.)

(Stark et al., Opt. Lett. 37, 770, 2012)

• (a) SC evolution inside PCF when ZDW varies with z (black).

• (b) SC spectra generated in several tapered fibers.

• Shortest wavelength was 280 nm well into the UV region.
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Argon-Filled Hollow-Core PCFs

(Mak et al., Opt. Exp. 21, 10492, 2013)

• Experimental (top) and simulated spectra at different argon pres-

sures and energies of 40-fs pulses at 800 nm.

• Shortest wavelength was as low as 200 nm in the UV region.
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SC Generation in the Mid-Infrared Region
• SC sources in the mid-IR region are needed for diverse applications

including food quality control, gas sensing, and medical diagnostics.

• Several different glasses (tellurite, fluoride, ZBLAN, chalcogenide)

have been used because of their low losses in the mid-IR region.

• Both planar waveguides and fibers have been used for SC generation

in recent years.

• Early experiments used 1.55-µm lasers for pumping the fiber.

• Pump wavelength was moved to near 3–4 µm in later experiments.

• Recent experiments have produced a SC extending beyond 10 µm.

• I have collaborated on this topic with Prof. Rahman of City Univer-

sity London.
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Tellurite Fiber Pumped at 1.55 µm

(Domachuk et al., Opt. Exp. 18, 7161, 2008)

• Tellurite fiber (<1 cm) pumped at 1.55 µm using 100-fs pulses.

• The resulting SC extended into the IR region up to 5 µm.
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Fluoride Fiber Pumped at 1.45 µm

(Qin et al., Appl. Phys. Lett. 95, 161103, 2009)

• Ultrabroad SC generated using a 2-cm-long fluoride fiber pumped

at 1.45 µm using 180-fs pulses with 50 MW peak power.

• The SC extended from ultraviolet to the IR region up to 6.3 µm.

• Simulated evolution of the SC is shown on the right.
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ZBLAN Fiber Pumped at 2 µm

(Kulkarni et al., JOSA B 28, 2486, 2011)

• A 8.5-m-long ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fiber pumped at

2 µm using nanosecond pulses.

• The SC extended from 2 to 4.5 µm with high output power.

• Pump power was up to 30 W at a repetition rate of 500 kHz.
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Chalcogenide waveguide Pumped at 3.26 µm

(Gai et al., Opt. Lett. 37, 3870, 2013)

• A 6.6-cm As2S3 waveguide pumped at 3.26 µm using 7.5-ps pulses.

• The SC extended up to to 4.2 µm at a peak power of 1.7 kW.

• Extension beyond 4.2 µm was limited by the cladding absorption.
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Improved Chalcogenide waveguides

(Yu et al., Opt. Mat. Exp. 3, 1075, 2013)

• Several groups have used planar rib waveguides for SC Generation

in the mid-IR region.

• These are grown on a MgF2 substrate to reduce losses.

• In one design Ge11.5As24Se64.5 and Ge11.5As24S64.5 are used as the

core and cladding materials, respectively.

• Simulations show that using MgF2 for lower cladding is better.
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Chalcogenide waveguides with MgF2 Cladding

(Karim et al., Opt. Exp. 23, 6903, 2015)

• Simulated SC spectra at a pump wavelength of 3.1 µm for a wave-

guide with (a) GeAsS and (b) MgF2 as the lower cladding material.

• Comparison of two claddings at 0.5 and 3 kW pump powers.

• Work done in collaboration with Aziz Rahman of City Univ. London.
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Chalcogenide Fiber Pumped near 4 µm

(Møller et al., Opt. Exp. 23, 3282, 2015)

• A 18-cm-long As38S62 fiber pumped from 3.3–4.7 µm using 320-fs

pulses. An OPO was used to tune the pump wavelength.

• The SC extended up to 7.5 µm at a peak power of 5.2 kW.
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Chalcogenide Fiber Pumped at 4 µm

(Yu et al., Opt. Lett. 40, 1081, 2015)

• A 11-cm-long Ge12As24S64 fiber pumped at 4 µm using 320-fs

pulses. An OPO was used for the experiment.

• The SC extended up to 10 µm at an average power of 40 mW.

• Cladding losses limited further extension into the mid-IR region.
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Combination of Two Fibers Pumped at 2 µm

(Kubat et al., Opt. Exp. 22, 3959, 2014)

• A combination of 10-m fluoride and 10-cm chalcogenide fibers was

pumped at 2 µm using 3.5-ps pulses with 20-kW peak power.

• The SC extended up to to 8 µm for the narrow-core ChG fiber.
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Chalcogenide PCF Designs

Karim et al., JOSA B (accepted Oct. 2015)

• SC simulations for hexagonal (top) and spiral (bottom) PCFs.

• Pumping is at 3.1 µm using 85-fs pulses with 3-kW peak power.

• Work done in collaboration with Aziz Rahman of City Univ. London.
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Chalcogenide Fiber Pumped at 6.3 µm

(Petersen et al., Nature Photon. 8, 830, 2014)

• A 8.5-cm-long As40S60 fiber pumped at 6.3 µm using 100-fs pulses.

An OPO was used to tune the pump wavelength.

• The SC extends from 2–13 µm at a peak power of 7.2 MW.
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Concluding Remarks
• The history of supercontinuum generation using glasses goes back

to 1969 when borosilicate glass was used to create the white light.

• Recent interest stems from a 2000 experiment in which a short piece

of PCF (75 cm) expanded the spectrum over 400 to 1600 nm.

• Supercontinuum can be created using CW light or pulses with

widths ranging from 10 fs to 100 ns.

• Use of normal dispersion reduces the bandwidth but makes the su-

percontinuum spectrally coherent.

• Recent research is focusing on extending the spectral range into the

mid-infrared region beyond 10 µm.

• Such sources are useful for a variety of applications requiring molec-

ular finger printing (food quality, gas sensing, medical imaging).
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