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Introduction
• Nonlinear optical effects have been studied since 1962 and have

found applications in many branches of optics.

• Nonlinear interaction length is limited in bulk materials because of

tight focusing and diffraction of optical beams:

Ldiff = kw2
0, (k = 2π/λ ).

• Much longer interaction lengths become feasible in optical wave-

guides, which confine light through total internal reflection.

• Optical fibers allow interaction lengths > 1 km.
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Advantage of Waveguides
• Efficiency of a nonlinear process in bulk media is governed by

(I0Lint)bulk =

(
P0

πw2
0

)
πw2

0

λ
=

P0

λ
.

• In a waveguide, spot size w0 remains constant across its length L.

• In this situation Lint is limited by the waveguide loss α .

• Using I(z) = I0 e−αz, we obtain

(I0Lint)wg =
∫ L

0
I0e−αz dz≈ P0

πw2
0α

.

• Nonlinear efficiency in a waveguide can be improved by

(I0Lint)wg

(I0Lint)bulk
=

λ

πw2
0α
∼ 106.
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Planar and Cylindrical Waveguides

• Dielectric waveguides employ total internal reflection to confine light

to a central region.

• The refractive index is larger inside this central region.

• Two main classes: Planar and cylindrical waveguides.

• In the planar case, a ridge structure used for 2-D confinement.

• Optical fibers dope silica glass with germanium to realize a central

core with slightly higher refractive index.
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Light Propagation in Waveguides
• Optical pulses launched into optical waveguides are affected by

(i) optical losses, (ii) dispersion, and (iii) Kerr nonlinearity.

• Losses are negligible in optical fibers (< 0.5 dB/km) and manage-

able (< 1 dB/cm) in planar waveguides.

• Dispersion can be normal or anomalous but its value can be tailored

through waveguide design.

• The combination of dispersion and nonlinearity leads to a variety of

nonlinear phenomena with useful applications.

• Optical fibers used often in practice because their low losses allow

long interaction lengths.

• Planar waveguides made using silicon, silicon nitride, or chalco-

genide glasses are attracting attention in recent years.
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Chromatic Dispersion

• Frequency dependence of the propagation constant included using

β (ω) = n̄(ω)ω/c = β0+β1(ω−ω0)+β2(ω−ω0)
2+ · · · ,

where ω0 is the carrier frequency of optical pulse.

• Group velocity is related to β1 = (dβ/dω)ω=ω0 as vg = 1/β1.

• Different frequency components of a pulse travel at different speeds

and result in pulse broadening governed by β2 = (d2β/dω2)ω=ω0.
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Waveguide Dispersion

• Mode index n̄(ω) = n1(ω)−δnW(ω).

• Material dispersion included through n1(ω) of the core.

• Waveguide dispersion results from δnW(ω) and depends on the

waveguide design and dimensions.

• Total dispersion β2 = β2M + β2W can be controlled by changing

design of a waveguide.

• β2 vanishes at a specific wavelength known as the zero-dispersion

wavelength (ZDWL).

• This wavelength separates the normal (β2 > 0) and anomalous

(β2 < 0) dispersion regions of a waveguide.

• Some fibers exhibit multiple zero-dispersion wavelengths.
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Major Nonlinear Effects

• Self-Phase Modulation (SPM)

• Cross-Phase Modulation (XPM)

• Four-Wave Mixing (FWM)

• Stimulated Brillouin Scattering (SBS)

• Stimulated Raman Scattering (SRS)

Origin of Nonlinear Effects

• Third-order nonlinear susceptibility χ (3).

• Real part leads to SPM, XPM, and FWM.

• Imaginary part leads to two-photon absorption (TPA).
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Third-order Nonlinear Susceptibility

• The tensorial nature of χ (3) makes theory quite complicated.

• It can be simplified considerably when a single optical beam excites

the fundamental mode of an optical waveguide.

• Only the component χ
(3)
1111(−ω;ω,−ω,ω) is relevant in this case.

• Its real and imaginary parts provide the Kerr coefficient n2 and the

TPA coefficient βT as

n2(ω)+
ic

2ω
βTPA(ω) =

3
4ε0cn2

0
χ
(3)
1111(−ω;ω,−ω,ω).

• A 2007 review on silicon waveguides provides more details:

Q. Lin, O. Painter, G. P. Agrawal, Opt. Express 15, 16604 (2007).
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Nonlinear Parameters

• Refractive index depends on intensity as (Kerr effect):

n(ω, I) = n̄(ω)+n2(1+ ir)I(t).

• Material parameter n2 = 3×10−18 m2/W is larger for silicon by a

factor of 100 compared with silica fibers.

• Dimensionless parameter r = βTPA/(2k0n2) is related to two-photon

absorption (TPA).

• For silicon βTPA = 5×10−12 m/W at wavelengths near 1550 nm.

• Dimensionless parameter r ≈ 0.1 for silicon near 1550 nm.

• Negligible TPA occurs in silica glasses (r ≈ 0).

• TPA is not negligible for chalcogenide glasses (r ≈ 0.2).



12/44

JJ
II
J
I

Back

Close

Self-Phase Modulation

• In silica fibers, refractive index depends on intensity as

n(ω, I) = n̄(ω)+n2I(t).

• Frequency dependence of n̄ leads to dispersion.

• Using φ = (2π/λ )nL, I dependence of n leads to nonlinear phase

shift

φNL(t) = (2π/λ )n2I(t)L = γP(t)L.

• Clearly, the optical field modifies its own phase (hence, SPM).

• For pulses, phase shift varies with time (leads to chirping).

• As the pulse propagates down the fiber, its spectrum changes

because of SPM induced by the Kerr effect.
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Nonlinear Phase Shift
• Pulse propagation governed by the Nonlinear Schrödinger Equation

i
∂A
∂ z
− β2

2
∂ 2A
∂ t2 + γ|A|2A = 0.

• Dispersive effects within the fiber included through β2.

• Nonlinear effects included through γ = 2πn2/(λAeff).

• If we ignore dispersive effects, solution can be written as

A(L, t) = A(0, t)exp(iφNL), where φNL(t) = γL|A(0, t)|2.

• Nonlinear phase shift depends on input pulse shape.

• Maximum Phase shift: φmax = γP0L = L/LNL.

• Nonlinear length: LNL = (γP0)
−1 ∼ 1 km for P0 ∼ 1 W.
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SPM-Induced Chirp
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• Super-Gaussian pulses: P(t) = P0 exp[−(t/T )2m].

• Gaussian pulses correspond to the choice m = 1.

• Chirp is related to the phase derivative dφ/dt.

• SPM creates new frequencies and leads to spectral broadening.
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SPM-Induced Spectral Broadening

• First observed in 1978 by

Stolen and Lin.

• 90-ps pulses transmitted

through a 100-m-long fiber.

• Spectra are labelled using

φmax = γP0L.

• Number M of spectral

peaks: φmax = (M− 1
2)π .

• Output spectrum depends on shape and chirp of input pulses.

• Even spectral compression can occur for suitably chirped pulses.
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SPM-Induced Spectral Narrowing
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• Chirped Gaussian pulses with A(0, t) = A0 exp[−1
2(1+ iC)(t/T0)

2].

• If C < 0 initially, SPM produces spectral narrowing.
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SPM: Good or Bad?
• SPM-induced spectral broadening can degrade performance of a

lightwave system.

• Modulation instability often enhances system noise.

On the positive side . . .

• Modulation instability can be used to produce ultrashort pulses at

high repetition rates.

• SPM often used for fast optical switching (NOLM or MZI).

• Formation of standard and dispersion-managed optical solitons.

• Useful for all-optical regeneration of WDM channels.

• Other applications (pulse compression, chirped-pulse amplification,

passive mode-locking, etc.)
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Modulation Instability
Nonlinear Schrödinger Equation

i
∂A
∂ z
− β2

2
∂ 2A
∂ t2 + γ|A|2A = 0.

• CW solution unstable for anomalous dispersion (β2 < 0).

• Useful for producing ultrashort pulse trains at tunable repetition

rates [Tai et al., PRL 56, 135 (1986); APL 49, 236 (1986)].
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Modulation Instability (cont.)

• A CW beam can be converted into a pulse train.

• Two CW beams at slightly different wavelengths can initiate

modulation instability and allow tuning of pulse repetition rate.

• Repetition rate is governed by their wavelength difference.

• Repetition rates ∼100 GHz realized by 1993 using DFB lasers

(Chernikov et al., APL 63, 293, 1993).
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Optical Solitons
• Combination of SPM and anomalous GVD produces solitons.

• Solitons preserve their shape in spite of the dispersive and

nonlinear effects occurring inside fibers.

• Useful for optical communications systems.

• Dispersive and nonlinear effects balanced when LNL = LD.

• Nonlinear length LNL = 1/(γP0); Dispersion length LD = T 2
0 /|β2|.

• Two lengths become equal if peak power and width of a pulse satisfy

P0T 2
0 = |β2|/γ .
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Fundamental and Higher-Order Solitons

• NLS equation: i∂A
∂ z −

β2
2

∂ 2A
∂ t2 + γ|A|2A = 0.

• Solution depends on a single parameter: N2 =
γP0T 2

0
|β2|

.

• Fundamental (N = 1) solitons preserve shape:

A(z, t) =
√

P0 sech(t/T0)exp(iz/2LD).

• Higher-order solitons evolve in a periodic fashion.
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Stability of Optical Solitons
• Solitons are remarkably stable.

• Fundamental solitons can be excited with any pulse shape.

Gaussian pulse with N = 1.

Pulse eventually acquires

a ‘sech’ shape.

• Can be interpreted as temporal modes of a SPM-induced waveguide.

• ∆n = n2I(t) larger near the pulse center.

• Some pulse energy is lost through dispersive waves.
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Cross-Phase Modulation

• Consider two optical fields propagating simultaneously.

• Nonlinear refractive index seen by one wave depends on the

intensity of the other wave as

∆nNL = n2(|A1|2+b|A2|2).

• Total nonlinear phase shift:

φNL = (2πL/λ )n2[I1(t)+bI2(t)].

• An optical beam modifies not only its own phase but also of other

copropagating beams (XPM).

• XPM induces nonlinear coupling among overlapping optical pulses.
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XPM: Good or Bad?

• XPM leads to interchannel crosstalk in WDM systems.

• It can produce amplitude and timing jitter.

On the other hand . . .

XPM can be used beneficially for

• Nonlinear Pulse Compression

• Passive mode locking

• Ultrafast optical switching

• Demultiplexing of OTDM channels

• Wavelength conversion of WDM channels
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XPM-Induced Crosstalk

• A CW probe propagated with 10-Gb/s pump channel.

• Probe phase modulated through XPM.

• Dispersion converts phase modulation into amplitude modulation.

• Probe power after 130 (middle) and 320 km (top) exhibits large

fluctuations (Hui et al., JLT, 1999).
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XPM-Induced Pulse Compression

• An intense pump pulse is copropagated with the low-energy pulse

requiring compression.

• Pump produces XPM-induced chirp on the weak pulse.

• Fiber dispersion compresses the pulse.
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XPM-Induced Mode Locking

• Different nonlinear phase shifts for the two polarization components:

nonlinear polarization rotation.

φx−φy = (2πL/λ )n2[(Ix +bIy)− (Iy+bIx)].

• Pulse center and wings develop different polarizations.

• Polarizing isolator clips the wings and shortens the pulse.

• Can produce ∼100 fs pulses.
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Four-Wave Mixing (FWM)

• FWM is a nonlinear process that transfers energy from pumps

to signal and idler waves.

• FWM requires conservation of (notation: E = Re[Aei(β z−ωt)])

? Energy ω1+ω2 = ω3+ω4

? Momentum β1+β2 = β3+β4

• Degenerate FWM: Single pump (ω1 = ω2).
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Theory of Four-Wave Mixing
• Third-order polarization: PNL = ε0χ (3)...EEE (Kerr nonlinearity).

E =
1
2

x̂
4

∑
j=1

Fj(x,y)A j(z, t)exp[i(β jz−ω jt)]+ c.c.

• The four slowly varying amplitudes satisfy

dA1

dz
=

in2ω1

c

[(
f11|A1|2+2 ∑

k 6=1
f1k|Ak|2

)
A1+2 f1234A∗2A3A4ei∆kz

]
dA2

dz
=

in2ω2

c

[(
f22|A2|2+2 ∑

k 6=2
f2k|Ak|2

)
A2+2 f2134A∗1A3A4ei∆kz

]
dA3

dz
=

in2ω3

c

[(
f33|A3|2+2 ∑

k 6=3
f3k|Ak|2

)
A3+2 f3412A1A2A∗4e−i∆kz

]
dA4

dz
=

in2ω4

c

[(
f44|A4|2+2 ∑

k 6=4
f4k|Ak|2

)
A4+2 f4312A1A2A∗3e−i∆kz

]



30/44

JJ
II
J
I

Back

Close

Simplified FWM Theory
• Full problem quite complicated (4 coupled nonlinear equations)

• Overlap integrals fi jkl ≈ fi j ≈ 1/Aeff in single-mode fibers.

• Linear phase mismatch: ∆k = β (ω3)+β (ω4)−β (ω1)−β (ω2).

• Undepleted-pump approximation simplifies the problem.

• Using A j = B j exp[2iγ(P1+P2)z], the signal and idler satisfy

dB3

dz
= 2iγ

√
P1 P2B∗4e−iκz,

dB4

dz
= 2iγ

√
P1 P2B∗3e−iκz.

• Signal power P3 and Idler power P4 are much smaller than

pump powers P1 and P2 (Pn = |An|2 = |Bn|2).

• Total phase mismatch: κ = β3+β4−β1−β2+ γ(P1+P2).

• Nonlinear parameter: γ = n2ω0/(cAeff)∼ 10 W−1/km.
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General Solution

• Signal and idler fields satisfy coupled linear equations

dB3

dz
= 2iγ

√
P1 P2B∗4e−iκz,

dB∗4
dz

=−2iγ
√

P1 P2B3eiκz.

• General solution when both the signal and idler are present at z= 0:

B3(z) = {B3(0)[cosh(gz) + (iκ/2g)sinh(gz)]
+ (iγ/g)

√
P1P2B∗4(0)sinh(gz)}e−iκz/2

B∗4(z) = {B∗4(0)[cosh(gz) − (iκ/2g)sinh(gz)]
− (iγ/g)

√
P1P2B3(0)sinh(gz)}eiκz/2

• If an idler is not launched at z = 0 (phase-insensitive amplification):

B3(z) = B3(0)[cosh(gz)+(iκ/2g)sinh(gz)]e−iκz/2

B∗4(z) = B3(0)(−iγ/g)
√

P1P2 sinh(gz)eiκz/2
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Gain Spectrum

• Signal amplification factor for a FOPA:

G(ω) =
P3(L,ω)

P3(0,ω)
=

[
1+
(

1+
κ2(ω)

4g2(ω)

)
sinh2[g(ω)L]

]
.

• Parametric gain: g(ω) =
√

4γ2P1P2−κ2(ω)/4.

• Wavelength conversion efficiency:

ηc(ω) =
P4(L,ω)

P3(0,ω)
=

(
1+

κ2(ω)

4g2(ω)

)
sinh2[g(ω)L].

• Best performance for perfect phase matching (κ = 0):

G(ω) = cosh2[g(ω)L], ηc(ω) = sinh2[g(ω)L].
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FWM: Good or Bad?

• FWM leads to interchannel crosstalk in WDM systems.

• It generates additional noise and degrades system performance.

On the other hand . . .

FWM can be used beneficially for

• Optical amplification and wavelength conversion

• Phase conjugation and dispersion compensation

• Ultrafast optical switching and signal processing

• Generation of correlated photon pairs
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Stimulated Raman Scattering
• Scattering of light from vibrating silica molecules.

• Amorphous nature of silica turns vibrational state into a band.

• Raman gain spectrum extends over 40 THz or so.

• Raman gain is maximum near 13 THz.

• Scattered light red-shifted by 100 nm in the 1.5 µm region.
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Raman Threshold

• Raman threshold is defined as the input pump power at which Stoke

power becomes equal to the pump power at the fiber output:

Ps(L) = Pp(L)≡ P0 exp(−αpL).

• Using Peff
s0 = (h̄ωs)Beff, the Raman threshold condition becomes

Peff
s0 exp(gRP0Leff/Aeff) = P0,

• Assuming a Lorentzian shape for the Raman-gain spectrum, Raman

threshold is reached when (Smith, Appl. Opt. 11, 2489, 1972)

gRPthLeff

Aeff
≈ 16 =⇒ Pth ≈

16Aeff

gRLeff
.
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Estimates of Raman Threshold
Telecommunication Fibers

• For long fibers, Leff = [1− exp(−αL)]/α ≈ 1/α ≈ 20 km

for α = 0.2 dB/km at 1.55 µm.

• For telecom fibers, Aeff = 50–75 µm2.

• Threshold power Pth ∼1 W is too large to be of concern.

• Interchannel crosstalk in WDM systems because of Raman gain.

Yb-doped Fiber Lasers and Amplifiers

• Because of gain, Leff = [exp(gL)−1]/g > L.

• For fibers with a large core, Aeff ∼ 1000 µm2.

• Pth exceeds 10 kW for short fibers (L < 10 m).

• SRS may limit fiber lasers and amplifiers if L� 10 m.
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SRS: Good or Bad?

• Raman gain introduces interchannel crosstalk in WDM systems.

• Crosstalk can be reduced by lowering channel powers but it limits

the number of channels.

On the other hand . . .

• Raman amplifiers are a boon for WDM systems.

• Can be used in the entire 1300–1650 nm range.

• EDFA bandwidth limited to ∼40 nm near 1550 nm.

• Distributed nature of Raman amplification lowers noise.

• Needed for opening new transmission bands in telecom systems.
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Stimulated Brillouin Scattering
• Originates from scattering of light from acoustic waves.

• Becomes a stimulated process when input power exceeds a

threshold level.

• Threshold power relatively low for long fibers (∼5 mW).

Transmitted

Reflected

• Most of the power reflected backward after SBS threshold is reached.
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Brillouin Shift
• Pump produces density variations through electrostriction.

• Resulting index grating generates Stokes wave through Bragg diffrac-

tion.

• Energy and momentum conservations require:

ΩB = ωp−ωs, ~kA =~kp−~ks.

• Acoustic waves satisfy the dispersion relation:

ΩB = vA|~kA| ≈ 2vA|~kp|sin(θ/2).

• In a single-mode fiber θ = 180◦, resulting in

νB = ΩB/2π = 2npvA/λp ≈ 11 GHz,

if we use vA = 5.96 km/s, np = 1.45, and λp = 1.55 µm.
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Brillouin Gain Spectrum

• Measured spectra for (a) silica-core (b) depressed-cladding, and

(c) dispersion-shifted fibers.

• Brillouin gain spectrum is quite narrow (∼50 MHz).

• Brillouin shift depends on GeO2 doping within the core.

• Multiple peaks are due to the excitation of different acoustic modes.

• Each acoustic mode propagates at a different velocity vA and thus

leads to a different Brillouin shift (νB = 2npvA/λp).
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Brillouin Threshold
• Pump and Stokes evolve along the fiber as

−dIs

dz
= gBIpIs−αIs,

dIp

dz
=−gBIpIs−αIp.

• Ignoring pump depletion, Ip(z) = I0 exp(−αz).

• Solution of the Stokes equation:

Is(L) = Is(0)exp(gBI0Leff−αL).

• Brillouin threshold is obtained from

gBPthLeff

Aeff
≈ 21 =⇒ Pth ≈

21Aeff

gBLeff
.

• Brillouin gain gB ≈ 5× 10−11 m/W is nearly independent of the

pump wavelength.
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Estimates of Brillouin Threshold

Telecommunication Fibers

• For long fibers, Leff = [1− exp(−αL)]/α ≈ 1/α ≈ 20 km for

α = 0.2 dB/km at 1.55 µm.

• For telecom fibers, Aeff = 50–75 µm2.

• Threshold power Pth ∼1 mW is relatively small.

Yb-doped Fiber Lasers and Amplifiers

• Pth exceeds 20 W for a 1-m-long standard fibers.

• Further increase occurs for large-core fibers; Pth ∼ 400 W when

Aeff ∼ 1000 µm2.

• SBS is the dominant limiting factor at power levels P0 > 0.5 kW.
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Techniques for Controlling SBS
• Pump-Phase modulation: Sinusoidal modulation at several frequen-

cies >0.1 GHz or with a pseudorandom bit pattern.

• Cross-phase modulation by launching a pseudorandom pulse train

at a different wavelength.

• Temperature gradient along the fiber: Changes in νB = 2npvA/λp

through temperature dependence of np.

• Built-in strain along the fiber: Changes in νB through np.

• Nonuniform core radius and dopant density: mode index np also

depends on fiber design parameters (a and ∆).

• Control of overlap between the optical and acoustic modes.

• Use of Large-core fibers: A wider core reduces SBS threshold by

enhancing Aeff.
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Concluding Remarks
• Optical waveguides allow nonlinear interaction over long lengths.

• Optical fibers exhibit a variety of nonlinear effects.

• Fiber nonlinearities are feared by telecom system designers because

they affect system performance adversely.

• Nonlinear effects are useful for many applications.

• Examples include: ultrafast switching, wavelength conversion, broad-

band amplification, pulse generation and compression.

• New kinds of fibers have been developed for enhancing nonlinear

effects (photonic crystal and other microstructured fibers).

• Nonlinear effects in such fibers are finding new applications in fields

such as optical metrology and biomedical imaging.
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• G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Aca-
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• G. New, Introduction to Nonlinear Optics (Cambridge University

Press, 2014).


