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Temporal Analog of Reflection and Refraction 
at a Temporal Boundary
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A temporal analog of reflection and refraction occurs 
when a pulse encounters a moving temporal boundary

Summary
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• A moving temporal boundary breaks translational symmetry in time 
and space, allowing both photon momentum and energy to change

• We performed numerical simulations to demonstrate that such 
a moving boundary produces temporal reflection and refraction

• We derive temporal analogs for Snell’s laws of reflection and refraction 
based on the conservation of photon momentum in the moving frame

• Using these equations, a temporal analog of total internal reflection 
was found and demonstrated using numerical simulations

• We are developing an experiment to verify these results using 
a traveling-wave phase modulator to produce the moving refractive 
index boundary 
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From a physics perspective, a refractive index boundary 
breaks translational symmetry
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• A spatial boundary breaks translational symmetry in space, 
which requires the photon energy (~) to be conserved while 
its momentum (i) changes

• A temporal boundary breaks translational symmetry in time, 
which  requires the photon momentum (b) to be conserved 
while its energy (~) changes

• From this comparison, we see that the frequency of the optical 
pulse is the temporal analog of the angle in space

• If we allow for a moving temporal boundary, we expect both 
energy and momentum to change
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A moving temporal boundary is a refractive index 
change that propagates through a dispersive medium
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A change in refractive index in time shifts the dispersion 
relation of the material
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• An index change of Dn will shift the dispersion relation by bB = k0 Dn

• We can Taylor expand the dispersion relation in the moving frame 
to give 

• The final term vanishes for T < 0 and has value bB for T > 0

• Using this dispersion relation together with Maxwell’s equations 
leads to the time-domain equation for the pulse envelope ,A z T^ h
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The temporal evolution is strikingly similar to an optical 
beam hitting a spatial boundary
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The dispersion relation in the moving frame can be used 
to explain the observed frequency shifts
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Solving for point (1) and point (3), we can find equations 
analogous to Snell’s laws
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• Setting 0b b=  we find the reflected 
and transmitted frequencies
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• By shifting the reference frequency to –c 0 1 2~ ~ b bD= _ i 
and using the notation – c~ ~ ~D = ^ h 
we find the temporal analogs to Snell’s laws



When bB is large, the transmitted frequency 
can no longer propagate
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Looking closer at the reflecting pulse, a temporal 
analog of the evanescent wave can be seen
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We have imposed momentum conservation, even 
though a moving boundary can change both photon 
momentum and energy
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• Momentum was only conserved in the moving frame 
where the dispersion relation is given by 

 
 
where – V1 B1 1b bD =  is a measure of the difference in speed 

• In the lab frame, the dispersion relation is given by

• Comparing these equations we find that 
–
VB

0b b
~ ~

= +l  

• Even though b is constant, bl changes because the frequency changes
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Summary/Conclusions
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A temporal analog of reflection and refraction occurs 
when a pulse encounters a moving temporal boundary
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• A moving temporal boundary breaks translational symmetry in time 
and space, allowing both photon momentum and energy to change

• We performed numerical simulations to demonstrate that such 
a moving boundary produces temporal reflection and refraction

• We derive temporal analogs for Snell’s laws of reflection and refraction 
based on the conservation of photon momentum in the moving frame

• Using these equations, a temporal analog of total internal reflection 
was found and demonstrated using numerical simulations

• We are developing an experiment to verify these results using 
a traveling-wave phase modulator to produce the moving refractive 
index boundary 


