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A temporal analog of reflection and refraction occurs
when a pulse encounters a moving temporal boundary
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* A moving temporal boundary breaks translational symmetry in time
and space, allowing both photon momentum and energy to change

 We performed numerical simulations to demonstrate that such
a moving boundary produces temporal reflection and refraction

 We derive temporal analogs for Snell’s laws of reflection and refraction
based on the conservation of photon momentum in the moving frame

e Using these equations, a temporal analog of total internal reflection
was found and demonstrated using numerical simulations

 We are developing an experiment to verify these results using
a traveling-wave phase modulator to produce the moving refractive
index boundary

E24516

(@ n
NELSE
\@ /,/’



From a physics perspective, a refractive index boundary
breaks translational symmetry
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E24517

LLE

A spatial boundary breaks translational symmetry in space,
which requires the photon energy (@) to be conserved while
its momentum (0) changes

A temporal boundary breaks translational symmetry in time,
which requires the photon momentum (f3) to be conserved
while its energy (@) changes

From this comparison, we see that the frequency of the optical
pulse is the temporal analog of the angle in space

If we allow for a moving temporal boundary, we expect both
energy and momentum to change




A moving temporal boundary is a refractive index

change that propagates through a dispersive medium
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A change in refractive index in time shifts the dispersion

relation of the material
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e An index change of An will shift the dispersion relation by 8g = kg An

e We can Taylor expand the dispersion relation in the moving frame
to give

B(@)=Bo+ABy (@ —@g)+ B, 5 (V- @o)? + B H(T)
e The final term vanishes for T < 0 and has value Bg for T > 0

e Using this dispersion relation together with Maxwell’s equations
leads to the time-domain equation for the pulse envelope A(z,T)

A, A, 24,52 oA ~iBg H(T)A
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The temporal evolution is strikingly similar to an optical

beam hitting a spatial boundary
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The dispersion relation in the moving frame can be used

to explain the observed frequency shifts
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Solving for point (1) and point (3), we can find equations
analogous to Snell’s laws
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e Setting 3 = B, we find the reflected v 05 -\ (2) (1) R
and transmitted frequencies §é 0.0 \ V,/
A Q Y \ 7
Wy =Wq — %’ ' 05 \\\—/// -
2 Q (3) e
B BB -1.0 =1 T=--1 =
AB; 235 B> 6 4 2 0 2
Wi =g + -1+ /1-
0T By \/ (Aﬁ1)2 v — Vg (THz)

e By shifting the reference frequency to w. = w, - (A,B1 / ,82)
and using the notation Aw = (® — W)
we find the temporal analogs to Snell’s laws

2
Aw, =-Aw, Aa),=Aa)o\/1— (Aﬁ;ﬁg
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When f3g is large, the transmitted frequency

can no longer propagate
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Aw;=Awy \/ 1- LB’% becomes complex
(AB1)
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Looking closer at the reflecting pulse, a temporal

analog of the evanescent wave can be seen
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We have imposed momentum conservation, even
though a moving boundary can change both photon

momentum and energy
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* Momentum was only conserved in the moving frame
where the dispersion relation is given by
B>

B(w)=Po+ABq (@0 —wy)+

where AB4 = 1 —1/Vg is a measure of the difference in speed

(a) a)o)

* In the lab frame, the dispersion relation is given by

B (@)= Bo+ B1 (00— @g)+ B,

(a) a)o)

W -
e Comparing these equations we find that 8'=f3 + V 0
B

e Even though B is constant, 3’ changes because the frequency changes

E24525




Summary/Conclusions

A temporal analog of reflection and refraction occurs
when a pulse encounters a moving temporal boundary
UR

LLE

* A moving temporal boundary breaks translational symmetry in time
and space, allowing both photon momentum and energy to change

 We performed numerical simulations to demonstrate that such
a moving boundary produces temporal reflection and refraction

 We derive temporal analogs for Snell’s laws of reflection and refraction
based on the conservation of photon momentum in the moving frame

e Using these equations, a temporal analog of total internal reflection
was found and demonstrated using numerical simulations

 We are developing an experiment to verify these results using
a traveling-wave phase modulator to produce the moving refractive
index boundary
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