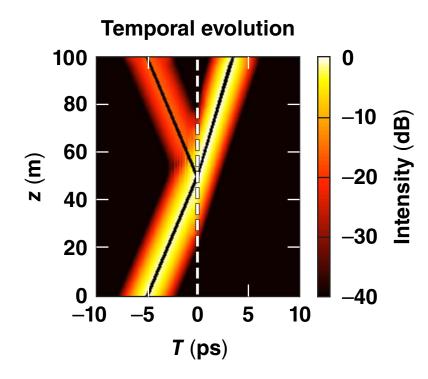
Temporal Analog of Reflection and Refraction at a Temporal Boundary



Spectral evolution $\begin{array}{c}
0 \\
-10 \\
0 \\
-20 \\
-30 \\
0 \\
-30 \\
0 \\
-40 \\
-40 \\
\end{array}$ $\begin{array}{c}
-20 \\
-30 \\
-30 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\
-40 \\$

B. W. Plansinis, G. P. Agrawal, and W. R. Donaldson University of Rochester Laboratory for Laser Energetics

Frontiers in Optics 2015 San Jose, CA 18–22 October 2015

LLE

A temporal analog of reflection and refraction occurs when a pulse encounters a moving temporal boundary

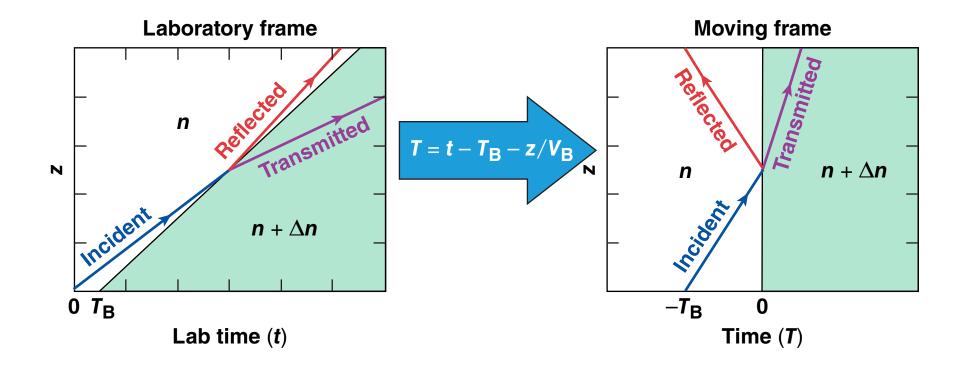
- A moving temporal boundary breaks translational symmetry in time and space, allowing both photon momentum and energy to change
- We performed numerical simulations to demonstrate that such a moving boundary produces temporal reflection and refraction
- We derive temporal analogs for Snell's laws of reflection and refraction based on the conservation of photon momentum in the moving frame
- Using these equations, a temporal analog of total internal reflection was found and demonstrated using numerical simulations
- We are developing an experiment to verify these results using a traveling-wave phase modulator to produce the moving refractive index boundary

From a physics perspective, a refractive index boundary breaks translational symmetry

- A spatial boundary breaks translational symmetry in space, which requires the photon energy (ω) to be conserved while its momentum (θ) changes
- A temporal boundary breaks translational symmetry in time, which requires the photon momentum (β) to be conserved while its energy (ω) changes
- From this comparison, we see that the frequency of the optical pulse is the temporal analog of the angle in space
- If we allow for a moving temporal boundary, we expect both energy and momentum to change

UR 🔌

A moving temporal boundary is a refractive index change that propagates through a dispersive medium



A change in refractive index in time shifts the dispersion relation of the material

- An index change of Δn will shift the dispersion relation by $\beta_{\rm B} = k_0 \Delta n$
- We can Taylor expand the dispersion relation in the moving frame to give

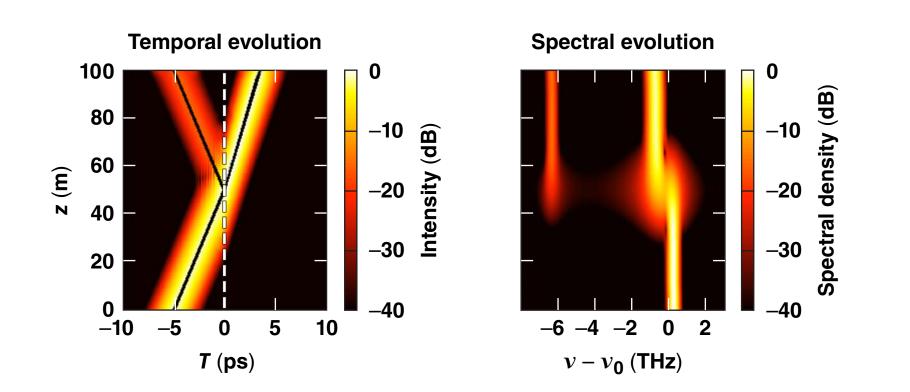
$$\boldsymbol{\beta}(\boldsymbol{\omega}) = \boldsymbol{\beta}_{0} + \Delta \boldsymbol{\beta}_{1} \left(\boldsymbol{\omega} - \boldsymbol{\omega}_{0}\right) + \frac{\boldsymbol{\beta}_{2}}{2} \left(\boldsymbol{\omega} - \boldsymbol{\omega}_{0}\right)^{2} + \boldsymbol{\beta}_{B} \boldsymbol{H}(\boldsymbol{T})$$

- The final term vanishes for T < 0 and has value β_B for T > 0
- Using this dispersion relation together with Maxwell's equations leads to the time-domain equation for the pulse envelope A(z, T)

$$\frac{\partial A}{\partial z} + \Delta \beta_1 \frac{\partial A}{\partial T} + i \frac{\beta_2}{2} \frac{\partial^2 A}{\partial T^2} = i \beta_{\rm B} H(T) A$$

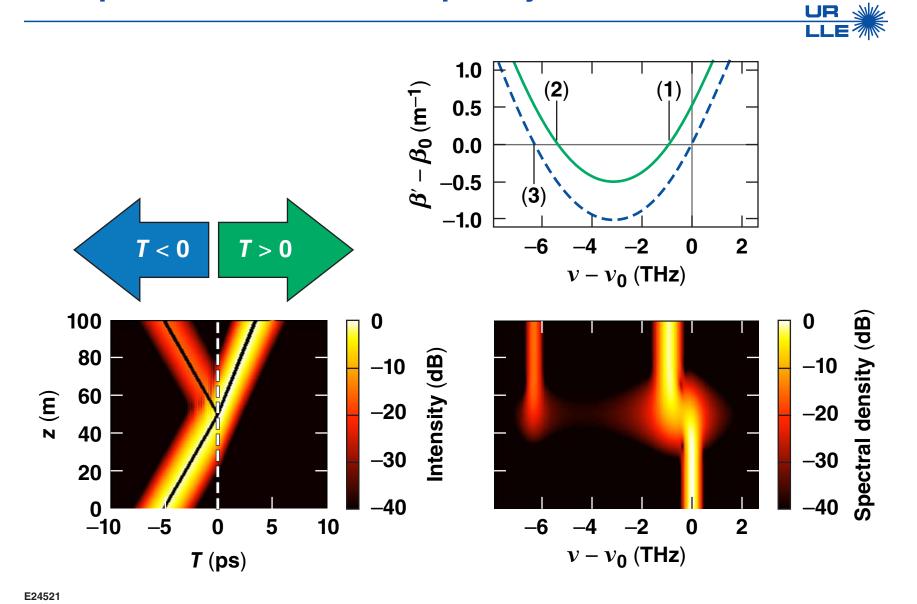
UR 🔌

The temporal evolution is strikingly similar to an optical beam hitting a spatial boundary



 $\beta_{\rm B} = 0.5 \, {\rm m}^{-1}$ $\Delta \beta_1 = 0.1 \, {\rm ps/m}$ $\beta_2 = 0.005 \, {\rm ps}^2 / {\rm m}$ $\Delta n = 8 \times 10^{-8}$

The dispersion relation in the moving frame can be used to explain the observed frequency shifts



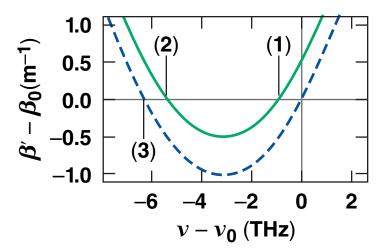
RÖCHESTER

Solving for point (1) and point (3), we can find equations analogous to Snell's laws

• Setting $\beta = \beta_0$ we find the reflected and transmitted frequencies $\Delta\beta_1$

$$\omega_r = \omega_0 - 2 \frac{-\beta_1}{\beta_2},$$

$$\omega_{t} = \omega_{0} + \frac{\Delta \beta_{1}}{\beta_{2}} \left[-1 + \sqrt{1 - \frac{2\beta_{B}\beta_{2}}{(\Delta \beta_{1})^{2}}} \right]$$

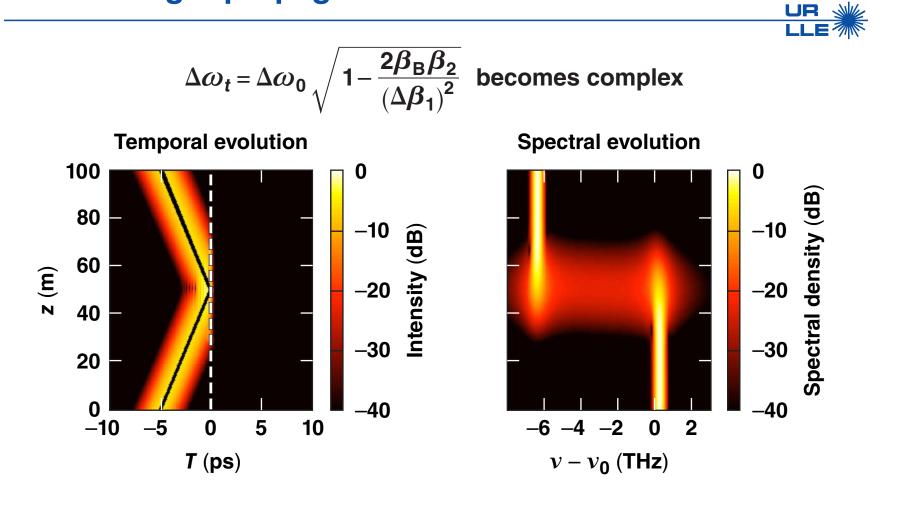


UR 🔌

• By shifting the reference frequency to $\omega_c = \omega_0 - (\Delta \beta_1 / \beta_2)$ and using the notation $\Delta \omega = (\omega - \omega_c)$ we find the temporal analogs to Snell's laws

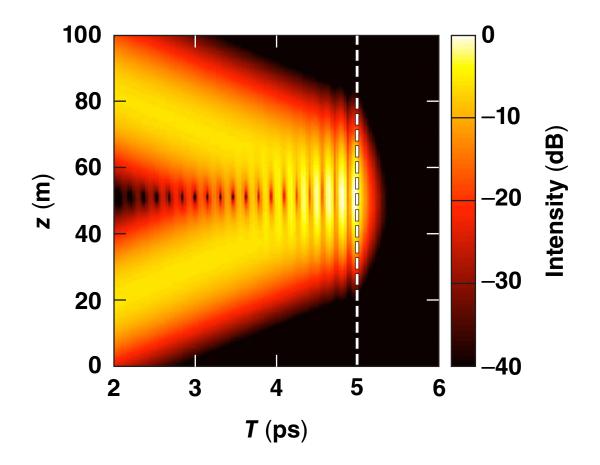
$$\Delta \omega_r = -\Delta \omega_0 \qquad \Delta \omega_t = \Delta \omega_0 \sqrt{1 - \frac{2\beta_B \beta_2}{(\Delta \beta_1)^2}}$$

When $\beta_{\rm B}$ is large, the transmitted frequency can no longer propagate



 $\beta_{\rm B} = 1.5 \, {\rm m}^{-1}$ $\Delta \beta_1 = 0.1 \, {\rm ps/m}$ $\beta_2 = 0.005 \, {\rm ps}^2 / {\rm m}$ $\Delta n = 2.4 \times 10^{-7}$

Looking closer at the reflecting pulse, a temporal analog of the evanescent wave can be seen



LL

We have imposed momentum conservation, even though a moving boundary can change both photon momentum and energy

 Momentum was only conserved in the moving frame where the dispersion relation is given by

$$\boldsymbol{\beta}(\boldsymbol{\omega}) = \boldsymbol{\beta}_0 + \Delta \boldsymbol{\beta}_1 \left(\boldsymbol{\omega} - \boldsymbol{\omega}_0\right) + \frac{\boldsymbol{\beta}_2}{2} \left(\boldsymbol{\omega} - \boldsymbol{\omega}_0\right)^2$$

where $\Delta \beta_1 = \beta_1 - 1/V_B$ is a measure of the difference in speed

• In the lab frame, the dispersion relation is given by

$$\boldsymbol{\beta}'(\boldsymbol{\omega}) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 (\boldsymbol{\omega} - \boldsymbol{\omega}_0) + \frac{\boldsymbol{\beta}_2}{2} (\boldsymbol{\omega} - \boldsymbol{\omega}_0)^2$$

- Comparing these equations we find that $\beta' = \beta + \frac{\omega \omega_0}{V_B}$
- Even though β is constant, β' changes because the frequency changes

A temporal analog of reflection and refraction occurs when a pulse encounters a moving temporal boundary

- A moving temporal boundary breaks translational symmetry in time and space, allowing both photon momentum and energy to change
- We performed numerical simulations to demonstrate that such a moving boundary produces temporal reflection and refraction
- We derive temporal analogs for Snell's laws of reflection and refraction based on the conservation of photon momentum in the moving frame
- Using these equations, a temporal analog of total internal reflection was found and demonstrated using numerical simulations
- We are developing an experiment to verify these results using a traveling-wave phase modulator to produce the moving refractive index boundary

