

Introduction

Speaker Recognition -> *absolute identity* of a given utterance Speaker Diarization -> *relative identity* and *time boundaries* in a conversation

Why Joint?

- Needed In certain scenarios (e.g., call center)
- They could benefit each other:
- \Rightarrow Diarization \rightarrow Recognition: 1. temporal continuity (Speaker Change Detection, SCD); 2. sparsity (only a few identities exist in a conversation)
- \Rightarrow Recognition \rightarrow Diarization: Cross-speaker, cross-context training in speaker recognition helps capture highly discriminative features of speech.

Proposed System

 \succ CNN1: Independently classifies the **absolute** speaker identity on equally spaced audio segments

> CNN2: Performs **Speaker Change Detection (SCD)** [1]

RNN: Integrates predicted results from CNN1 and CNN2

sparsity

 $loss = y_{true} \times \log(y_{pred}) + \sqrt{y_{pred}}$

CNN2

CNN1

$$oss = (0.1 + y_{true}) \times (y_{true} - y_{pred})^2$$

Biases towards false positives of SCD

JOINT SPEAKER DIARIZATION AND RECOGNITION USING CONVOLUTION AND RECURRENT NEURAL NETWORKS

Zhihan Zhou, Yichi Zhang & Zhiyao Duan

Department of Electrical and Computer Engineering, University of Rochester

Dataset & Evaluation Measure

Dataset 1 – Call_Home Dataset:

 \geq 50 two-person conversations (in total 100 speakers) Speaker labels are from "1" to "100". Silence is labeled

Use Classification Accuracy to evaluate on all of the 100

Dataset 2 – Prisoner Dataset from *Voice Biometrics Group*: \geq 100 two-person conversations between a prisoner and an external partner (in total 10 prisoners)

 \succ Speaker labels are from "1" to "10" for the prisoners. Silence is labeled "0". All the external partners are labeled

Use Precision and Recall to evaluate on only the

correctly detected segments of the prisoner **Precision** = *# total predicted segments of the prisoner*

correctly detected segments of the prisoner Recall = -# ground – truth segments of the prisoner

Experimental Results

le 1 . Predicted accuracy (mean \pm std) comparisons.				
Method	Acc.			
(1) CNN1 w/ cross-entropy lossCNN1 w/ sparsity constraint loss	$\begin{array}{c} 0.711 \pm 0.019 \\ 0.741 \pm 0.009 \end{array}$			
 (3) CNN1 in (2) + all zeros SCD (4) CNN1 in (2) + predicted SCD (5) CNN1 in (2) + GT SCD 	$\begin{array}{c} 0.743 \pm 0.008 \\ 0.829 \pm 0.004 \\ 0.867 \pm 0.003 \end{array}$			
ONN1 restricted to GT identities	0.847 ± 0.007			

• Comparing (1) and (2) shows the effectiveness of sparsity team in loss function of CNN1.

Table
ID
1
2
3
4
5

>[1] Marek Hruz and Zbynek Zajic, "Convolutional neural network for speaker change detection in telephone speaker diarization system," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.

• Comparing (3), (4) and (5) shows the important role of SCD. • Comparing (4) and (6) shows satisfying performance of the proposed method.

2. I feetsion and recall for 10 prisoners				
Pre.	Rec.	ID	Pre.	Rec.
0.921	0.776	6	0.933	0.832
0.767	0.836	7	0.235	0.006
0.796	0.837	8	0.941	0.753
0.786	0.838	9	0.743	0.777
0.899	0.830	10	0.370	0.607

2 Precision and recall for 10 prisoners

Conclusions

Proposed a system using two CNNs and an RNN to perform joint speaker diarization and recognition.

 \succ Experiments show that our approach achieves satisfying results compared to a baseline that uses unpractical side information: (6) CNN1 restricted to ground-truth identities.

Speaker Change Detection (SCD) plays an important role in the Final RNN prediction.

References