IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2015)

Rotational Reset Strategy for Online Semi-supervised NMF-based Speech Enhancement for Long Recordings

Jun Zhou^{1,2}, Shuo Chen², and Zhiyao Duan²

¹Southwest University, Chongqing, China. • ²University of Rochester, NY, USA. *zhouj@swu.edu.cn* • *schen76@ur.rochester.edu* • *zhiyao.duan@rochester.edu*

Introduction Discover the dictionary degradation problem in online semisupervised NMF-based speech enhancement approach. Proposes a rotational reset strategy for dictionary update to solve the degradation problem. Makes NMF-based approach truly outperform classical methods in online semi-supervised settings for non-stationary noise. First systematic experiment with long recordings (10-minute) for NMF-based speech enhancement. **Online Semi-supervised NMF-based Speech Enhancement for Non-stationary Noise** ► NMF-based non-stationary noise modeling

The Speech Dictionary Degradation Problem

- The algorithm [1] works well when it was ran shorter than 1 minute.
- Severer degradation starts to happen after 2 minutes.
- The algorithm [1], and in fact all existing NMF-based methods, to our best knowledge, were evaluated using files shorter than 30 seconds.

7000 4000 2000

(a) Enhancement performance over time.

Problem analysis

• Speech dictionary is updated using the multiplicative update rule.

 $P(f|z) \leftarrow \frac{1}{C_1} \sum_{s \in \mathcal{B} \cup \{t\}} V_{fs} P_s(z) \cdot P(f|z), \text{ for } z \in \mathcal{S}, \quad (1)$

- Zero (close-to-zero) values will never be (be very slowly) updated.
- Once a value goes close to zero, it will be hard to come back.

Proposed Rotational Reset Strategy

- Rotationally reset M elements of the speech dictionary in every Tseconds.
- Average reset rate is M/T.

Advantages

- Newly reset elements are recovering their abilities to adapt to new speech signal.
- Old elements keep the continuity of the dictionary to prevent sudden changes and performance drops in the enhanced speech signal.

► The degradation problem is now solved

(b) Evolution of one speech basis vector.

► Dataset

- 5 SNRs: -10, -5, 0, 5, 10 dB.

► Comparisons

- Four classical speech enhancement algorithms [3]
- Original algorithm in [1]

Rotation parameter sensitivity analysis

SDR (dB)	M=1	2	3	4	5	6	7
T=5s	4.67	4.54	4.47	4.39	4.35	4.30	4.26
15s	4.92	4.91	4.82	4.79	4.76	4.71	4.66
30s	4.84	4.95	4.98	4.97	4.91	4.92	4.88
60s	4.46	4.94	4.95	5.03	5.01	5.00	4.99
120s	4.34	4.72	4.73	4.75	4.85	4.91	4.91
240s	4.00	4.14	4.22	4.35	4.24	4.50	4.74

- 1/10] elements/second.

References

[1] Z. Duan, G. J. Mysore, and P. Smaragdis, "Online PLCA for real-time semi-supervised source separation," in Proc. Latent Variable Analysis and Signal Separation (LVA-ICA), 2012, pp. 34âĂȘ41. [2] N. Mohammadiha, P. Smaragdis, and A. Leijon, "Supervised and unsupervised speech enhancement using nonnegative matrix factorization," IEEE Transactions on Audio, Speech, and Language *Processing*, vol. 21, no. 10, pp. 2140âĂŞ2151, 2013. [3] P. C. Loizou, Speech Enhancement: Theory and Practice, CRC press, 2013.

Experiments

• 500 noisy speech files, 10 minute long each, sampled at 16 kHz. • Each file is a concatenation of 10 speakers with alternating genders. • 10 non-stationary noises: birds, casino, cicadas, computer keyboard, eating chips, frogs, jungle, machine guns, motorcycles, and ocean.

 Similar reset rates show similar enhancement performance. • Performance is not sensitive to reset rate within the range of [1/30],

• Degradation appears if rate < 1/40 elements/second. • Enhancement is not as good if rate > 1/5 elements/second.