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ABSTRACT

Non-negative matrix factorization (NMF) has been successfully ap-
plied to speech enhancement in non-stationary noisy environments.
Recently proposed online semi-supervised NMF algorithms are of
particular interest as they carry the two nice properties (online
and semi-supervised) of classical speech enhancement approaches.
These algorithms, however, have only been evaluated using noisy
mixtures shorter than 30 seconds. In this paper we find that these
algorithms work well when it is run for less than 1 minute, but
degradation of the enhanced speech signal starts to appear after 2
minutes. We analyze that the reason is due to the inappropriate
dictionary update rule, which gradually loses its ability in updating
the speech dictionary. We then propose a simple rotational reset
strategy to solve the problem: Instead of continuously updating the
entire speech dictionary, we periodically and rotationally select ele-
ments and reset their values to random numbers. Experiments show
that this strategy successfully solves the degradation problem and
the improved algorithm outperforms classical speech enhancement
algorithms significantly even when they are run for 10 minutes.

Index Terms— Speech enhancement, non-stationary noise,
non-negative matrix factorization, source separation

1. INTRODUCTION

Speech enhancement is widely used in telecommunications, hear-
ing aids, and robust speech recognition. It aims to improve the
quality and intelligibility of noisy speech by reducing noise [1].
Classical speech enhancement algorithms can be categorized into
four kinds: spectral subtraction [2], Wiener filtering [3], statistical-
model-based [4], and subspace algorithms [5]. These algorithms
share two nice properties in real-world applications: First, they are
semi-supervised, i.e., a statistical model for the noise is calculated
from noise-only excerpts but not for speech. Second, they are online
algorithms hence useful in real-time applications, i.e., the enhance-
ment of the current time frame does not depend on future frames.
However, these algorithms cannot work well with non-stationary
noise such as computer-keyboard-typing noise and babble noise,
due to the fundamental assumptions of the noise models [6].

Non-negative Matrix Factorization (NMF) [7] and its math-
ematical equivalence, Probabilistic Latent Component Analysis
(PLCA) [8], have shown promising results in separating non-
stationary sound sources, and have been applied in speech enhance-
ment in non-stationary noisy environments [9]. Among the many
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algorithms, online semi-supervised algorithms proposed in recent
years [6, 10–12] are of particular interest, as they hold the two
nice properties (online and semi-supervised) of classical speech en-
hancement methods. These algorithms pre-learns the noise (speech)
dictionary from noise-only (speech-only) training excerpts, and
then updates the speech (noise) dictionary during separation.

These online semi-supervised NMF-based algorithms have
shown promising results in various experiments in non-stationary
noisy environments. However, the noisy speech utterances in the
experiments are all shorter than 30 seconds. In fact, to our best
knowledge, most of the existing NMF-based (not only online semi-
supervised) speech enhancement methods [9, 11, 13–15] only use
files shorter than 30 seconds for evaluation. While the length of
test files may not matter for supervised or offline NMF methods,
we argue that it does matter for online semi-supervised approaches.
For these approaches, the dictionary of one source needs to be up-
dated from the past but no theoretical results exist to guarantee the
appropriateness of the updates over a long period, especially when
the underlying source whose dictionary needs to be updated evolves
rapidly over time.

In this paper, we make the first investigation of the effect of the
test file length to the performance of online semi-supervised NMF-
based speech enhancement algorithms. We base our analysis on a
representative algorithm [10], which has been shown to outperform
classical algorithms in non-stationary noisy files of about 15 sec-
onds long. In this algorithm, the noise dictionary is pre-learned and
the speech dictionary is updated during separation. We find that
severe distortion on the enhanced speech signals starts to appear
when the algorithm is ran for more than 2 minutes. We analyze
this problem and find that over time the speech dictionary becomes
sparser and sparser hence explains less and less energy of the mix-
ture spectrogram. This suggests that the speech dictionary multi-
plicative update rule is inappropriate. Other online semi-supervised
NMF-based speech enhancement algorithms [6, 11, 12] use a simi-
lar multiplicative update rule and similar system designs (e.g., slid-
ing window/buffer and warm initialization). Therefore, we believe
that the degradation problem is universal in existing online semi-
supervised NMF-based methods.

In this paper, we propose a simple way to solve this problem
by periodically reset elements in the speech dictionary to random
values. These elements are selected in a rotational fashion. By do-
ing so we “reboot” the update process of the speech dictionary. We
compare the improved algorithm with the original one [10] and four
classical speech enhancement algorithms, on long noisy speech files
that contain multiple non-overlapping speakers. Results show that
the improved algorithm successfully solves the degradation prob-
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lem, and it outperforms the comparison methods significantly in
various SNR conditions.

2. EXISTING ONLINE SEMI-SUPERVISED PLCA AND
ITS DEGRADATION PROBLEM

PLCA is a mathematical equivalence of NMF. The basic idea of
PLCA-based separation is to approximate each magnitude spectrum
of the mixture signal Pt(f) with Qt(f), a linear combination of
spectral basis vectors from sources’ dictionaries:

Pt(f) ≈ Qt(f) =
∑

z∈S∪N
P (f |z)Pt(z), (1)

where P (f |z) for z ∈ S represents the speech dictionary, and for
z ∈ N represents the noise dictionary. Pt(z) are the combination
coefficients (or activation weights). The enhanced speech magni-
tude spectrum can then be obtained by

∑
z∈S P (f |z)Pt(z), and

its time domain signal can be reconstructed by taking an inverse
Fourier transform using the mixture signal’s phase.

[10] is a representative online semi-supervised PLCA algo-
rithm applied to speech enhancement. It assumes that the train-
ing data for noise but not for speech is available beforehand to
train a noise dictionary. During separation, the noise dictionary is
fixed while the speech dictionary and the activation weights of both
dictionaries are estimated. Note that it is because of the varying
activation weights that the fixed noise dictionary can model non-
stationary noise. To make the separation online without having the
estimated speech dictionary overfit the current mixture frame, the
algorithm collects a moving buffer of past mixture frames that are
likely to contain speech signals (detected by a Voice Activity Detec-
tion (VAD) module), and approximates the current mixture frame as
well as the weighted buffer frames:

argmin
P (f|z) for z∈S

Pt(z) for z∈S∪N

d(Pt(f)||Qt(f))+
α

L

∑

s∈B
d(Ps(f)||Qs(f)), (2)

where d(·||·) measures the mismatch between the mixture signal
and its approximation. B represents the set of the L buffer frames;
α is the tradeoff between the approximation of the current frame t
and that of buffer frames.

To reduce the computational complexity, the algorithm updates
the speech dictionary from its past values whenever it receives a
new frame. The algorithm also fixes the activation weights of buffer
frames as what have been estimated when enhancing those frames.
These operations constitute a so called “warm initialization” strat-
egy. The benefit is that the algorithm is much faster as it inherits
information from the past. It is noted that the moving buffer (win-
dow) and warm initialization strategies are commonly used in other
online semi-supervised NMF algorithms [6, 11, 12] as well.

This algorithm has been shown to outperform four kinds of clas-
sical speech enhancement algorithms in non-stationary noisy envi-
ronments in [6], on noisy speech files about 15 seconds long of the
same speaker in each file. As discussed in the introduction, we think
that the length of test files may affect the performance significantly.
Therefore, we create a number of long noisy speech files, each of
which contains multiple speakers, to test the algorithm. Interest-
ingly, enhancement performance degrades significantly over time.

Figure 1 shows an example of the degradation phenomenon.
Figure 1(a) shows the average Signal-to-Distortion Ratio (SDR)
calculated by the the BSS EVAL 3.0 toolbox [16] over 10 pieces

1 2 3 4 5 6 7 8 9 10
−2
−1

0
1
2
3
4
5
6

Time (Minute)

S
D

R
(d

B
)

(a) Enhancement performance over time.

Time (Minute)

F
re

qu
en

cy
 (

H
Z

)

1 2 3 4 5 6 7 8 9 10
0

1000
2000
3000
4000
5000
6000
7000
8000

(b) Evolution of one basis vector in the speech dictionary
over time. Red/blue shows high/low energy, respectively.

Figure 1: Illustration of the speech degradation problem of the orig-
inal algorithm in [10].

of noisy speech files, each of which is 10 minutes long, created
by mixing a clean speech file with a motorcycle noise file at the
Signal-to-Noise Ratio (SNR) of 0 dB. Each speech file was created
by concatenating speech sentences from 10 different speakers in a
sequence with alternating genders, where each speaker takes about
1 minute. We can see that the SDR value starts to degrade signifi-
cantly at around 2 minutes from the beginning, and never rebounds.
We listened to the enhanced speech signals carefully and found that
they sounded thinner (less full) over time. By the end of the file,
the speech sounded very thin, although not much noise interference
could be heard either.

3. PROBLEM ANALYSIS AND PROPOSED SOLUTION

This leads us to reason that the speech dictionary may gradually
become sparser over time, so it cannot extract enough energy that
should belong to speech from the mixture. To verify this thought,
we visualize the evolution of the speech dictionary over time. There
are in total 7 basis vectors and they all behave similarly. In Figure
1 we show the evolution of one vector. We can see that the basis
vector indeed gradually becomes sparser. At the beginning of the
file, many elements of the basis vector take large values. By the end
of the file, however, most elements are close to zero. No wonder
why the enhanced speech was thin at the end, as it was reconstructed
using basis spectra that contained only a few sinusoids!

This indicates that there is some problem in the speech dictio-
nary update process. In [10], the commonly used multiplicative
update rule [17] is adopted to update the speech dictionary and acti-
vation weights. In each iteration, the speech dictionary P (f |z) and
the activation weights Pt(z) are updated from their previous values
by multiplying some factor:

P (f |z) ← 1

C1

∑

s∈B∪{t}
VfsPs(z) · P (f |z), for z ∈ S, (3)
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Pt(z) ← 1

C2

∑

f

VftP (f |z) · Pt(z), for z ∈ S ∪ N . (4)

One problem of multiplicative update rule is that zero (or close-
to-zero) elements will not get updated (or will be updated slowly).
The warm initialization adopted in [10] initializes the speech dictio-
nary in a new time frame as that has been updated in the previous
frame. This speeds up the algorithm convergence when the speech
characteristics do not change much. However, when the character-
istics do change much (e.g., change of speaker or drastic pitch shift
of the same speaker), the dictionary cannot be updated appropri-
ately. For example, suppose the speaker changes from a female to
a male, then the dictionary basis vector corresponding to a vowel
of the male cannot be effectively updated from the basis vector of
the female speaker, because the male vector should show high en-
ergy at his fundamental frequency, but the female vector is likely to
show low energy at this frequency. Instead, the vector is likely to
remain a low value at this frequency in the future. Therefore, the
basis vector will become sparser and sparser over time. In other
words, the speech dictionary will gradually lose its ability to adapt
to new speech signals.

Having identified and analyzed the degradation problem, here
we propose a simple solution for it. Instead of always initializing
the speech dictionary with previously updated values, we reset the
dictionary to random values once after a while. This will bring back
the speech dictionary’s potential to be adapted to new speech sig-
nals and prevent degradation in the enhanced speech. The problem
of this solution, however, is that the random dictionary resulted from
each reset will take much more iterations of updates before it could
well explain the speech signal. This will cause significant fluctu-
ations of speech dictionary quality and computation complexity of
dictionary updates.

In this paper, we propose a rotational reset strategy: we peri-
odically select and reset a subset of speech dictionary elements to
random values, where the subsets are selected in a fixed rotational
fashion. Let T be the reset period, M be the number of elements
selected for reset in each period (reset element amount). Then the
average reset rate is M/T . Compared to resetting the entire speech
dictionary once for a while, this rotational reset strategy “smoothes
out” the dictionary update process. While newly reset elements
are recovering their potentials to adapt to new speech signals, old
elements keep the continuity of the dictionary to prevent sudden
changes in the enhanced signals.

Figure 2(a) shows the speech enhancement result and dictionary
basis vector evolution over time using the proposed rotational reset
strategy, on the same 10 noisy speech files as in Figure 1(a). We
can see that the SDR of the proposed method stays around 5 dB
and does not decrease over time. The basis vector in Figure 2(b)
does not become sparse over time either. In fact, the values of each
frequency bin can change from high to low and also low to high, to
be adapted to different speech signals at different time frames.

4. EXPERIMENTS

We test the proposed strategy using 500 noisy speech files, each of
which is about 10 minutes long. These files are obtained by adding
clean speech files with noise-only files at different SNRs. We select
5 male and 5 female speakers from the PTDB-TUG speech corpus
[18] and concatenate their randomly selected utterances to generate
10 different clean speech files. During the concatenation, male and
female speakers are alternated to maximize the change of speech
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(b) Evolution of one basis vector in the speech dictionary over
time. Red/blue shows high/low energy, respectively.

Figure 2: The proposed rotational reset strategy solves the speech
degradation problem.

signals over time. Noise-only files are generated using the non-
stationary noise dataset created in [10]. There are in total 10 kinds
of noise: birds, casino, cicadas, computer keyboard, eating chips,
frogs, jungle, machine guns, motorcycles, and ocean. Each noise
file is at least one minute long. The first twenty seconds are used
to train the noise dictionary beforehand. The rest is duplicated and
concatenated to generate a long noise-only file to match up with
each clean speech file. Clean speech files and their corresponding
noise-only files are finally mixed with 5 different SNRs: -10, -5, 0,
5, 10 dB. The sampling rate of all the files is 16 kHz.

We first compare the proposed algorithm with four classi-
cal speech enhancement algorithms: spectral subtraction (MB)
[2], Wiener filtering (Wiener-as) [3], statistical-model-based (log-
MMSE) [4] and subspace algorithm (KLT) [5]. We use Loizou’s im-
plementations of these algorithms, as provided in [1]. Noise mod-
els of these algorithms are also calculated from the twenty seconds
noise training excerpts and kept fixed. It is noted that noise tracking
methods have been proposed in recent years to adapt noise models
for non-stationary noise for the classical algorithms [19,20]. In this
paper, however, we only compare to the widely used basic algo-
rithms. We also compare the improved algorithm with the original
algorithm in [10]. We use two kinds of evaluation metrics. The first
is PESQ [21] , which is a widely used objective speech quality mea-
sure. It ranges from 0.5 to 4.5, with a larger value for better quality.
The second is Signal-to-Distortion Ratio (SDR), calculated using
the BSS-EVAL 3.0 [16] toolbox. SDR is widely used in evaluating
source separation algorithms, and it accounts for both interference
removal and artifact introduction in the separated sources.

For the proposed algorithm, we segment each noisy speech file
into frames of 64 ms with 48 ms overlap. We set the rotational reset
period T to 60 seconds, and the reset element amount M to 4, as this
parameter combination achieves good performance on the motorcy-
cle noise with 0 dB SNR. All the other parameters (e.g., speech and
noise dictionary sizes, buffer size, buffer tradeoff factor, number of
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Table 1: Effect analysis of the rotational reset period (rows) and reset element amount (columns) on speech enhancement performance, using
10 noisy speech files with the motorcycle noise in 0 dB SNR.

SDR (mean±std) 1 2 3 4 5 6 7

5s 4.67±.07 4.54±.04 4.47±.03 4.39±.02 4.35±.04 4.30±.05 4.26±.04

15s 4.92±.07 4.91±.06 4.82±.05 4.79±.04 4.76±.05 4.71±.05 4.66±.05

30s 4.84±.16 4.95±.09 4.98±.06 4.97±.05 4.91±.05 4.92±.06 4.88±.07

60s 4.46±.54 4.94±.11 4.95±.05 5.03±.08 5.01±.04 5.00±.10 4.99±.07

120s 4.34±.78 4.72±.28 4.73±.37 4.75±.20 4.85±.17 4.91±.12 4.91±.14

240s 4.00±.57 4.14±.99 4.22±.78 4.35±.86 4.24±.87 4.50±.80 4.74±.13

iterations in each frame) are set to the same as those used in [10].
In particular, the speech dictionary size is 7, providing a compact
dictionary with good speech reconstruction. The number of itera-
tions in each frame is 20, which is enough for the convergence of
the multiplicative update rule.
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Figure 3: Overall comparison of the proposed algorithm with four
classical speech enhancement methods and the original algorithm at
different SNR conditions.

Figure 3 shows the comparison results. Each data point shows
the average over 100 noisy speech files (10 files for each of the 10
kinds of noise). It can be seen that for both PESQ and SDR, the pro-
posed algorithm improves from the original algorithm significantly
for SNRs larger than -5 dB, and the improvement becomes more
apparent as the SNR increases. This is reasonable as the strong
speech signals in the mixture may “trap” the speech dictionary el-
ements more easily after convergence in each frame in the original
algorithm, causing more severe degradation. The improved algo-
rithm achieves significantly better results than all the four classical
algorithms for all SNRs less than 10 dB. As the original algorithm
achieves worse results than classical algorithms for SNR larger than
5 dB due to degradation, the proposed strategy has successfully

solved the problem.
In the second experiment, we conduct parameter sensitivity

analysis on the two rotational reset parameters T and M . For T ,
we take values of 5, 15, 30, 60, 120, and 240 seconds, and for M ,
we take values of 1, 2, 3, 4, 5, 6, and 7. We run the algorithm
with all these parameter combinations. As the reset rate equals to
M/T , multiple combinations may share the same reset rate. One
interesting question for this experiment is whether the reset rate is
the key parameter, i.e., whether combinations corresponding to the
same reset rate achieves similar results. We take 10 noisy speech
files corresponding to the motorcycle noise to do the analysis.

Table 1 shows the results. There are several interesting findings.
First, cells with the same or similar reset rate do show similar mean
SDR values. This indicates that the reset rate is indeed the key pa-
rameter of the rotational strategy. For example, cells (15s, 1), (30s,
2), (60s, 4), and (120s, 7) all have about 4.95 dB, while cells (60s,
1), (120s, 2), and (240s, 4) all shows about 4.5 dB. Second, speech
enhancement performance generally increases when the reset rate
decreases from the upper right corner (5s, 7) and reaches the high-
est values in the middle part e.g., (30s, 4), but then decreases again
when the reset rate becomes too fast e.g., (240s, 1). This suggests
that the dictionary elements should not be reset too frequently, as
doing so may prevent useful information learned from the past be-
ing passed to future frames. However, the degradation phenomenon
starts to happen if the dictionary elements are not reset frequently
enough, which is also suggested by the larger variances in the lower
left corner cells. Nevertheless, the performance is not very sensitive
to the rotational reset parameters as many cells in the middle range
give good results.

5. CONCLUSIONS

We conducted the first experiment of using long (about 10 minutes)
noisy speech files containing multiple speakers to evaluate speech
enhancement performance of online semi-supervised PLCA-based
approaches, while existing papers all use files shorter than 30 sec-
onds. We found that the enhanced speech signal started to degrade
after the algorithm was ran for 2 minutes. We analyzed the prob-
lem and found that the reason was due to the inappropriate update
of the speech dictionary. We then proposed a simple solution to
periodically and rotationally reset speech dictionary elements. Ex-
periments showed that this simple strategy indeed solved the prob-
lem. The improved algorithm outperformed the original algorithm
and four classical speech enhancement algorithms significantly in
non-stationary noisy environments in various SNR conditions. Fur-
thermore, parameter analysis showed that the enhancement perfor-
mance was not very sensitive to the strategy’s parameters.
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