

IMINET: Convolutional Semi-Siamese Networks for Sound Search by Vocal Imitation

Yichi Zhang & Zhiyao Duan

Department of Electrical and Computer Engineering, University of Rochester {yichi.zhang, zhiyao.duan}@rochester.edu

Introduction

Q: How to search for a sound that matches the concept in your head?

A: Current ways: through its name or other semantic labels.

Q: What if you don't remember its name, or what you are looking for simply doesn't have a semantic meaning?

A: Imitate the concept with your voice!

- Dog barking sound: infantile bark threat bark
- Synthesized sound:

Prior Work

IMISOUND: Feature learning through SAE on vocal imitations + Predefined distance calculation between imitation query and sound candidates [1]

Proposed System

- Data-driven: learns both features and similarities from data
- > Supervised training: requires pos/neg pairs of imitations and sounds
- Unsupervised retrieval: no need to train on imitation-sound pairs of a certain sound concept for the retrieval of that sound concept

[1] Y. Zhang and Z. Duan, "IMISOUND: AN unsupervised system for sound query by vocal

[2] M. Cartwright and B. Pardo, "VocalSketch: Vocally imitating audio concepts," CHI 2015.

The IMINET Model

Example of a positive pair: Left: CQT spectrogram of an imitation of a police siren Right: CQT spectrogram of a recording of a police siren

FC3: 1 unit, sigmoid activation FC2: 32 units. ReLU activation FC1: 432 units. ReLU activation

Conv4: 6 filters, receptive field: 3 * 3 Conv3: 6 filters, receptive field: 3 * 3 Pool2: maximum, stride: 2 * 4 Conv2: 12 filters, receptive field: 3 * 3 Pool1: maximum, stride: 2 * 4 Conv1: 12 filters, receptive field: 3 * 3

Step 1: Pre-processing

Constant-Q Transform (CQT) with 2 seconds raw input Spectrogram size: 72 * 129

Step 2: Feature Extraction

Convolutional Networks (CNN) to learn features in two towers with tied, partially tied (layers in shade are weightshared), and untied weights

Note: configs. in blue are Semi-Siamese

Step 3: Metric Learning

Use Fully Connected Networks (FCN) to learn the pair-wise similarity and generate a single value output in [0, 1]

Step 4: Sound Retrieval

Pair the imitation query with each recording in the library to calculate its likelihood of being a positive pair. Likelihood scores are ranked in descending order

Late Fusion

> Fuse the retrieval results (similarity likelihoods) of tied, partially tied, and untied weights of IMINET:

$$L_{fusion}(i) = L_{tied}(i) * L_{untied}(i) * L_{partial}(i)$$

> Fuse the retrieval results of IMINET with IMISOUND:

$$L_{sae}(i) = \frac{e^{-D(i)}}{\sum_{n=1}^{N} e^{-D(n)}} \qquad L_{fusion}(i) = L_{csn}(i) * L_{sae}(i)$$

Dataset & Evaluation Measure

Table 1. VocalSketch Data Set V1.0.4 [2]

Category	# classes # samples	
Acoustic instr.	40	400
Comm. Synthesizers	40	404
Everyday	120	1209
Single synthesizer	40	405

Evaluation Measure: $MRR = \frac{1}{Q} \sum_{i=1}^{Q} \frac{1}{rank_i}$

Experimental Results

Table 2. MRR (mean ± std) comparisons of various IMINET configurations

Category	Config.	Acoustic Instr.	Comm. Synthesizers	Everyday	Single Synthesize
Baseline	IMISOUND	0.450	0.308	0.126	0.380
Proposed	Untied	0.377 ±	0.318 ±	0.154 ±	0.325 ±
		0.019	0.020	0.014	0.020
Proposed	Partial	$0.384 \pm$	0.304 ±	$0.154 \pm$	0.340 ±
		0.027	0.015	0.015	0.031
Proposed	Tied	$0.401 \pm$	0.327 ±	$0.158 \pm$	$0.380 \pm$
		0.028	0.019	0.012	0.018
Proposed	Untied +	0.438 ±	$0.343 \pm$	0.175 ±	0.382 ±
	Partial + Tied	0.015	0.020	0.012	0.013
Proposed	Untied +	0.470 ±	0.356 ±	0.168 ±	0.402 ±
	IMISOUND	0.025	0.011	0.010	0.022
Proposed	Partial +	0.496 ±	0.346 ±	0.173 ±	0.417 ±
	IMISOUND	0.018	0.025	0.014	0.025
Proposed	Tied +	0.504 ±	0.355 ±	0.171 ±	0.452 ±
	IMISOUND	0.014	0.016	0.009	0.020
Proposed	Untied + Partial + Tied + IMISOUND	0.520 ± 0.020	0.371 ± 0.013	0.188 ± 0.007	0.447 ± 0.012

Conclusions

- > Proposed IMINET, a convolutional semi-Siameses network that learns both features and similarities, to search sounds by vocal imitation
- > Proposed three IMINET configurations by choosing different weight sharing strategies between the two towers
- > Proposed late fusion of the retrieval results of different IMINET configurations and those of IMISOUND to improve retrieval performance