
PAPERS Journal of the Audio Engineering Society
Vol. 64, No. 7, July 2016 (C© 2016)

DOI: http://dx.doi.org/10.17743/jaes.2016.0013

Supervised and Unsupervised Sound Retrieval
by Vocal Imitation

YICHI ZHANG
(yichi.zhang@rochester.edu)

AND ZHIYAO DUAN, AES Member
(zhiyao.duan@rochester.edu)

Dept. of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA

Searching sounds with text labels is often problematic and time consuming as text labels
do not often describe the detailed audio content. Query by example is a way to improve the
effectiveness and efficiency of sound retrieval. In this paper we propose a novel approach
for sound query by example: query by vocal imitation. Vocal imitation is commonly used
in human communication and can be employed for novel human-computer interaction. We
propose two related systems. The supervised system addresses the retrieval problem by vocal
imitation recognition. It trains a multi-class classifier using training vocal imitations of different
sound classes in the library and classifies a new imitation query into one of the classes. This
system thus cannot retrieve sounds that are not trained. The unsupervised system is more
flexible in that it measures the feature distance between the imitation query and each sound
in the library and returns sounds the most similar to the query. One challenge of designing
these systems is finding an effective feature representation of imitation queries and sounds
in the library. Existing handcrafted audio features may not work well given the variety of
vocal imitations and the mismatch between vocal imitations and actual sounds. We propose
to learn feature representations from training vocal imitations automatically using a Stacked
Auto-Encoder (SAE). Experiments show that sound retrieving performance by automatically
learned features outperform those carefully handcrafted ones that were used in existing systems
in both supervised and unsupervised settings.

0 INTRODUCTION

Designing ways to efficiently access and manage multi-
media documents such as audio recordings is an important
information retrieval task as these documents proliferate
and grow. Existing ways to index and search audio doc-
uments are based on text metadata and text-based search
engines. This, however, is not efficient or effective in many
scenarios. First, much of the audio in user-contributed on-
line repositories (e.g., SoundCloud, Freesound) has meta-
data that does not describe the details of the audio content,
making the content undiscoverable through a text-based
search. Second, files labeled with content-relevant tags do
not often have specific enough tags based on which searches
can return hundreds or thousands of examples. Third, even
for audio libraries that are carefully designed with a hierar-
chical taxonomy and detailed text labels (e.g., sound effect
libraries), searching a specific sound is not easy. It requires
users to be familiar with the taxonomy and remember the
detailed descriptors of the sound, which is the ability that
only experienced sound production engineers have. Fourth,
even for these experts, difficulties exist. Many sounds, es-
pecially computer-synthesized sounds, do not have seman-
tic meanings and are often labeled with the parameters

of the synthesizers, and text-based search becomes very
non-intuitive.

A query-by-example (QBE) [1] sound retrieval system
addresses these issues. Presented with an audio recording
as a query, the system compares the query with sound files
in the library and returns files similar to the query. It can
be combined with a text-based search to make the search
more efficient, effective, and intuitive.

QBE for music files has been addressed in several scenar-
ios. Query-by-beat-boxing allows users to find drum loops
with similar rhythmic patterns to their vocal percussion
[2]. Query-by-humming allows users to find songs with a
similar melody to their humming or singing [3], [4]. This
technique, however, does not generalize to sounds that do
not have a pitch. Cover song identification retrieves songs
that are the same as the query song but of a different version
(e.g., by a different band, in different environments) [5], [6].
However, this technique does not generalize to non-music
audio.

In this paper we propose a novel QBE system for general
audio. More specifically, the system takes a user’s vocal
imitation as a query and searches for sounds in the library
that are similar to the query. Vocal imitation is a human
behavior where the user utilizes his/her voice as well as

J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July 1

ZHANG AND DUAN PAPERS

lips, tongues, cheeks, etc., to mimic a specific sound. The
reason that we use vocal imitations as queries are twofold.
First, vocal imitation is widely used in human communi-
cation. It improves the vividness of a presentation; helps
to convey ideas that are difficult to describe in language;
and is an effective way to communicate with people not
speaking the same language. Second, vocal imitation is a
natural extension to speech and singing and it broadens
existing ways of audio-based human-computer interaction.
If we proceed one step further, it can enable novel ways
for animal-computer interaction. In fact, vocalization is ar-
guably the most natural way for animals to interact with
computers.

Modeling vocal imitations and using them as queries,
however, is challenging. The challenges mainly reside on
the feature representation, i.e., what features are most ef-
fective to represent vocal imitations as queries for sound
search. The reasons are twofold. First, for different kinds
of sounds, the key aspects that people tend to imitate are
different. For example, for a car horn (du-du) sound, the
key characterizing aspects are likely to be the constant
pitch contour and the rhythm (relative lengths of horns
versus silences), while the absolute pitch (e.g., 200 Hz vs.
300 Hz) and timbre (e.g., du versus beep, ba) of different
imitations can be quite different. For a cat-meowing sound,
however, the key aspects are likely to be both the pitch and
timbre evolution, while the sound, hence the imitations as
well, may lack a clear rhythm. Second, vocal imitations
are subject to the physical constraints imposed by the hu-
man voice system. For example, the human voice cannot
match the variety of pitch, timbre, and dynamics of many
target sounds; cannot make as fast amplitude or frequency
modulations as motors or synthesizers; and cannot produce
polyphonic sounds. Therefore, surface-level features of a
correct query-sound pair can lie in very different spaces,
although some deeper-level representations of them must
be similar.

In this paper we present our work on designing sound
retrieval systems using vocal imitation queries. Two related
systems are presented: the supervised system [7] addresses
the retrieval problem through vocal imitation recognition.
A multi-class classifier is first trained for all sounds in the
database using their training vocal imitations. When a new
imitation query is presented, the system classifies it into one
of the sounds in the database and retrieves the sound. While
this system achieves good performance, it only works in
the closed-set scenario, i.e., it cannot retrieve sounds that
are not trained.

The unsupervised system [8], however, is much more
flexible. It measures the distance between the imitation
query and each sound concept in the database and retrieves
the closest ones to the user. We explore different kinds of
distance measures at two different levels: patch-level and
recording-level. As for the former, each imitation query and
sound is represented by a sequence of features extracted
in each overlapping 525 ms long segment of the audio.
We propose to calculate the combination of the Kullback-
Leibler (K-L) divergence [9] and the Dynamic Time Warp-
ing (DTW) distance [10] between these two feature vector

sequences of each query-sound pair. For the latter, we rep-
resent each imitation query and sound by a long feature
vector that summarizes the whole recording statistics over
the patch-level features. We then calculate the cosine dis-
tance between the two recording-level feature vectors for
each imitation-sound pair.

To address the feature representation challenges, we pro-
pose to learn a feature representation from a collection of
vocal imitations using a Stacked Auto-Encoder (SAE), one
type of deep neural network. Compared to handcrafted fea-
tures such as Mel-frequency Cepstral Coefficients (MFCC)
[11], and spectral features automatically learned features
have the benefit of tailoring the feature representation to
the specific type of input data and modeling the complex
non-linear relationships between them.

We conduct systematic experiments using the VocalS-
ketch Data Set v1.0.4 [12]. Experiments show that the au-
tomatically learned features by the SAE outperform the
carefully handcrafted features in both our supervised and
unsupervised systems. Experiments also show that the more
flexible unsupervised system achieves comparable perfor-
mance with its supervised counterpart in several categories.
Detailed comparison of different distance measures of the
unsupervised system is also provided.

The main contributions of this work are threefold. First,
this is the first systematic investigation of sound retrieval
by vocal imitation and we propose both a supervised and
unsupervised system. To our best knowledge, there exists
little work about this topic. Second, this is the first work that
employs automatic feature learning techniques and demon-
strates their superiority over carefully handcrafted features
for sound retrieval. Third, we conduct thorough experi-
ments on a large dataset while existing works used a much
smaller dataset or lacked experiments.

Preliminary versions of the proposed systems have been
published in [7] and [8]. In this paper we improve the auto-
matic feature learning module by designing a better SAE,
improve the distance measure module of the unsupervised
system, construct more competitive baselines, and conduct
more systematic experiments. The rest of the paper is orga-
nized as follows:

We first review related work in Sec. 1, then introduce fea-
ture representations by neural networks in Sec. 2. Our pro-
posed supervised and unsupervised vocal imitation recogni-
tion systems are described in Sec. 3 and Sec. 4 respectively.
Experimental results are shown in Sec. 5 and finally we
conclude the paper in Sec. 6.

1 RELATED WORK

To our best knowledge, there are few systems designed
for sound retrieval by vocal imitation.

Roma and Serra [13] proposed an online system that al-
lows the user to query sounds on Freesound.org by record-
ing audio with a microphone. The statistics of MFCC and
their derivatives were used as descriptors to represent a
given audio clip but no formal evaluation was reported.

Blancas et al. [14] built a supervised system us-
ing carefully designed features extracted by the Timbre

2 J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July

PAPERS SUPERVISED AND UNSUPERVISED SOUND RETRIEVAL BY VOCAL IMITATION

Toolbox [15] and an SVM classifier. A vocal imitation
query was classified to a class within each sound cate-
gory and sounds in that class were retrieved. This system
was further combined with text-based search to retrieve
sounds that have similar text labels to the sounds in the
class. This system, however, was only evaluated on four
categories (cat, dog, car, and drums) and each category
only had three or four classes. In fact, when scaled to a
larger database with more classes, the hand-crafted features
may have difficulties in representing the complex acous-
tic aspects of vocal imitations. In addition, this supervised
system cannot retrieve sounds that do not have training
imitations.

Helén and Virtanen [16] designed a query by example
system for generic audio. Other than query by vocal imita-
tion, one sample drawn from the database served as a query
example and the rest were considered as the database. Both
query and database sound samples were divided into short
frames and a feature vector is extracted in each frame. The
query-sample pairwise similarity is measured by the dif-
ference between the probability density functions (pdfs)
of their frame-wise features by Gaussian mixture models
(GMM). The pdf difference was represented by various sim-
ilarity measures like Mahalanobis distance, K-L divergence
and its variations, cross-likelihood ratio test, etc. However,
traditional handcrafted features such as MFCCs, spectral
spread, harmonic ratio, total energy, etc., were extracted.

2 FEATURE REPRESENTATIONS

One of the main challenges of sound retrieval by vocal
imitation is to find appropriate feature representations of
vocal imitations. A good representation should capture the
essential sound aspects that make the imitations resemble
the corresponding sounds. Conventional audio features are
designed by clever engineering to cover different aspects of
sounds, including pitch (by fundamental-frequency related
features), loudness (by energy features), timbre (by spectral
and cepstral features), and their temporal modulations (by
temporal differences of the features). These features, how-
ever, may have difficulties in modeling the relationships
between vocal imitations and the corresponding sounds.
There are two reasons.

First, the key aspects along which imitations are sim-
ilar to their corresponding sounds may not be a simple
enumeration of the surface-level aspects that the conven-
tional features cover. Some deeper interactions between the
surface-level aspects might be important in modeling vocal
imitations. Second, surface-level features of vocal imita-
tions are often quite different from those of the correspond-
ing sounds, due to the physical constraints of the human
voice system. However, there must be some deeper-level
representation by which the imitation and the correspond-
ing sound are similar.

In recent years, automatic feature learning [17] has
shown its significant advantages over handcrafted features
in many tasks in computer vision [18], speech recognition
[19], and music information retrieval [20]. The basic idea
is to use Deep Neural Networks (DNN) to fit the training

x

x

x

Nx

z

z

Mz

x

x

x

Nx

Fig. 1. Illustration of an auto-encoder. W denotes the weights
between the input layer (x) and the hidden layer (z), and W

′

denotes the weights between the hidden layer (z) and the output
layer (y). b and b

′
are the biases. Auto-encoders are trained to

reconstruct the inputs at the outputs.

data in an unsupervised way. Thanks to the highly nonlinear
relationship between input and output of the DNNs, auto-
matically learned feature representations are often a highly
non-linear transformation of the input raw data and are of-
ten able to capture the underlying structures. For example,
feature representations learned by a convolutional neural
network on human face images show local organs such as
nose and eye in shallow layers and holistic representations
of the face in deeper layers [18].

In this paper we choose to adopt Stacked Auto-Encoder
(SAE) [21] for automatic feature learning because it is sim-
ple, easy-to-train, and achieves feature dimensionality re-
duction. As shown in Fig. 1, an auto-encoder is a neural
network with one hidden layer and the same amount of in-
puts and outputs. The input vector is normalized to the range
from 0 to 1. The transfer function of each hidden neuron
and output neuron is a sigmoid function that squashes the
normalized input into a bounded output ranging from 0 to
1. This model uses the backpropagation algorithm to learn
the parameters W, b, W

′
and b

′
, so that the output layer x̂

approximates the input layer x. As the hidden layer often
has a smaller size than the input/output layers, the hidden
layer output is forced to learn a compressive representation
of the input, which achieves dimension reduction.

An SAE is constructed by stacking multiple auto-
encoders together. Fig. 2 shows the process of building
an SAE with two hidden layers. In this model we utilize
a greedy layer-wise training process to learn the weights
and bias. Specifically, by feeding the raw data as input, we
first learn the parameters W1, b1, W1

′
, and b1

′
of the first

auto-encoder with the backpropagation algorithm. We then
discard the output layer and feed the hidden layer output
to the second auto-encoder to learn its parameters W2, b2,
W2

′
, and b2

′
. The second auto-encoder is thus stacked onto

the hidden layer of the first auto-encoder and the resulted
SAE has two hidden layers. Following the same rule, we
can stack more auto-encoders and build SAEs with more
hidden layers. A sparsity constraint is added to the objec-
tive function of training by setting the average activation of
each hidden neuron to be close to 0. This means in most
time the hidden neurons are inactive. The sparsity constraint

J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July 3

ZHANG AND DUAN PAPERS

z

Kz

z

z

Mz

z

z

Mz

x

x

x

Nx

z

z

Mz

x

x

x

Nx

Fig. 2. Illustration of a stacked auto-encoder (SAE) with two
hidden layers as two auto-encoders. Raw data is fed to the first
auto-encoder to learn W1 and b1. The first auto-encoders hidden
layer output is fed to the second auto-encoder to learn W2 and b2.

n

t

f

ms ms

m

Fig. 3. Patch segmentation of a CQT spectrogram.

simulates the mechanism of actual nerve cells and helps to
discover interesting feature structure [22].

We adopt the SAE with two hidden layers to learn a
feature representation from vocal imitations. Instead of us-
ing raw audio waveforms as inputs to the SAE, we use a
time-frequency representation as inputs. To do so, we first
resample each training vocal imitation file with a sampling
rate of 16 kHz. We then perform a 6-octave (50 to 3200 Hz)
Constant-Q Transform (using CQT toolbox in the MAT-
LAB environment) [23] to calculate a magnitude spectro-
gram with a logarithmic frequency scale. This logarithmic
scale is in correspondence to the human auditory perception
and greatly reduces the frequency dimensionality thanks
to its lower frequency resolution at high frequencies. We
use 12 frequency bins in each octave and in total 72 fre-
quency bins for the entire spectrogram. The CQT hop size
is 26.25 ms. We then segment the spectrogram into over-
lapping patches with a patch size of 525 ms (20 frames)
and a patch hop size of 26.25 ms (1 frame). The patch
size is chosen based on the fact that one syllable, which
is the smallest unit to carry semantic meanings, is roughly
250 ms long on average in normal English speeches [24].
By choosing the patch size of 525 ms, we hope that patches
capture some important temporal dependencies used in vo-
cal imitations. Therefore, the spectrogram of each patch is
a matrix with dimensions of 72*20. We then vectorize the
matrix into a 1440-d vector and feed it to the SAE. Fig. 3
shows the patch segmentation of a CQT spectrogram of a
vocal imitation query.

The SAE is thus designed to have 1440 input neurons.
The number of neurons of the first and second hidden layers

(a) Visualization of the first hidden layer features.

(b) Visualization of the second hidden layer features.

Fig. 4. Feature visualization. Each subfigure is composed of 100
(10×10) spectrograms showing the first 100 features captured
by the network weights in that layer. For each spectrogram the
horizontal axis represents time and the vertical axis represents
frequency. Lighter color represents higher energy.

are empirically set to 1000 and 600, respectively. Each neu-
ron is fully connected to the neurons in the previous layer
by a set of weights. After training, these weights represent
a feature formula (or filter) captured by the neuron. In other
words, the neuron is more activated when the previous layer
outputs values similar to these weights. For the new vocal
imitation inputs, the hidden layer activations are used as the
features. Therefore, there are in total 1000 and 600 features
in the first and second hidden layers, respectively, each of
which captures a different pattern in the data. These pat-
terns can be visualized using the method described in [18].
Fig. 4 shows the first 100 features in the first and second
hidden layer. We can see that the first hidden layer extracts
features that act as preliminary building blocks of the CQT
spectrogram. The feature for each neuron in the second
hidden layer is obtained by a weighted linear combination
of features of the first hidden layer neurons to which it is
strongly connected. These features are more abstract.

The second-hidden layer output is used to represent each
patch, which is a 600-d vector. We further calculate the first-
order derivative (delta) of the vector w.r.t. time to capture

4 J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July

PAPERS SUPERVISED AND UNSUPERVISED SOUND RETRIEVAL BY VOCAL IMITATION

longer-term temporal evolution, resulting a 1200-d vector
for each patch. Therefore, each vocal imitation is repre-
sented by a sequence of 1200-d feature vectors.

3 PROPOSED SUPERVISED SYSTEM

Based on the 1200-d vector sequence representation of
vocal imitations, we first design a supervised system for
sound retrieval. We view each sound in the library as a
class and use a multi-class SVM to classify a vocal imita-
tion query to these classes. Sounds in classes with the high-
est classification confidence realized in [25] are retrieved
for the imitation query. This system requires us to design
recording-level features from the representations for classi-
fication, train the classifier, and retrieve sounds according
to the classification results. We describe these modules in
detail in the following subsections.

3.1 Feature Extraction
To convert the 1200-d patch-level vector sequence rep-

resentation into recording-level features, we calculate six
statistics in each dimension: maximum, minimum, mean,
median, standard deviation, and interquartile range. There-
fore, each vocal imitation query is represented as a
7200-d feature vector to achieve feature early fusion. Note
that these statistics provide a simple summarization of the
patch-level representation; however, it does not capture the
temporal evolution beyond single patches. Given that tem-
poral evolution within single patches is already captured by
the SAE representation and the dimensionality is already
quite high, we do not model longer-term temporal evolution
at the recording-level features, to avoid overfitting in the
classification.

3.2 Classification
We view each sound in the library as a potential class

that a vocal imitation query falls into. We collect around
10 vocal imitations for each class and use them to train
a multi-class SVM with the LIBSVM package [26]. We
use the C-SVC classifier with a Radial Basis Function
(RBF) kernel, and tune the cost of constraints violation
C = 1000 empirically. Before training, we normalize each
dimension of the 7200-d vector into the range of –1 and
1. For a new vocal imitation query, we perform the same
normalization. We then classify it using the multi-class
SVM, under the assumption that the query is within these
classes.

3.3 Sound Retrieval
Given the classification result, sound(s) in the returned

class can be retrieved. However, the returned class may
not always be correct. Therefore, in addition to the binary
classification output, we also obtain a probabilistic classifi-
cation output, showing the probability (confidence) that the
vocal imitation belongs to each of the classes. In LIBSVM
[26], the one-against-one class probabilities are first calcu-
lated, then the posterior probability of a specific class can
be obtained by solving the optimization problem described

in [25]. We then sort these classes according to their clas-
sification probabilities from high to low and return sounds
in the highly-ranked classes.

3.4 Discussions
In our preliminary work [7], we performed classification

on the patch-level features and then obtained recording-
level classification results through majority vote. Later, we
observed that summarizing patch-level features with simple
statistics and performing classification at the recording-
level directly gives better results and saves computa-
tion. Therefore, we only describe this new setting in this
paper.

It is noted that this supervised system does not compare
the vocal imitation query with the sounds in the library di-
rectly. Instead, the link between them is established through
classification, which is based on the assumption that train-
ing vocal imitations and the new imitation query of a sound
are similar. This assumption is valid for many kinds of
sounds, however; it can fail in some cases when the sound
is complex and hard to imitate and when the training imi-
tations are produced by people with very different cultural
backgrounds from the user. In addition, this system does
not work in an open set scenario, i.e., it cannot retrieve
sounds/classes that are not trained. This is a significant
limitation of the system to be deployed by itself to a large
sound library where many sounds lack training imitations.
However, the supervised idea is useful in sound retrieval by
vocal imitation systems as it mines the collaborative infor-
mation across users when more and more vocal imitation
queries are contributed and collected.

4 PROPOSED UNSUPERVISED SYSTEM

To make sound retrieval more flexible and independent
of the existence of training vocal imitations of sounds, we
design an unsupervised system named IMISOUND. Again,
this system uses the automatically learned representations
for vocal imitations, which are described in Sec. 2. This
system also represents sounds in the library with this rep-
resentation, mapping sounds to the same feature space as
vocal imitations. It then calculates the distances between
the imitation query and each sound in the library and re-
trieves the closest sounds. In the following we describe the
details of the distance calculation.

4.1 Distance Calculation
As described in Sec. 2, each imitation query is repre-

sented by a sequence of vectors, each of which corresponds
to the second-hidden-layer output of the SAE taking a patch
as input. We further represent each sound in the library
in the same way by performing CQT, segmenting it into
patches, and feeding them to the SAE. We can calculate the
distance between the two vector sequences at two different
levels: the patch-level that considers the temporal evolution
or distribution of the vectors, and the recording-level that
considers simple statistics of the vectors.

J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July 5

ZHANG AND DUAN PAPERS

4.1.1 Patch-Level Distance
Here in the patch-level setting, we only use the original

600-d feature vectors but not the deltas for two reasons:
(1) dimensionality reduction and ease of computation, (2)
the delta components are designed to measure temporal
evolution, but the distance calculation described below will
cover this purpose.

So now both the imitation query and the target sound are
represented by a sequence of 600-d vectors, although their
sequence lengths can be quite different. If the imitation
and the sound are similar, their feature sequences tend to
resemble each other in terms of the temporal evolution or
the probability distribution.

To consider the temporal evolution in distance calcu-
lation, we align the two sequences using Dynamic Time
Warping (DTW) and use the alignment cost as a distance.
This distance considers how the 600 dimensions evolve
collectively over time and may capture pitch and timbre
evolution. To perform DTW on the two feature sequences,
we use cosine distance in Eq. (3) for the local cost mea-
sure that ignores the absolute energy difference. We align
the first vectors and the last vectors of the two sequences
and find the warping path that gives the lowest overall
cost. This cost is the DTW distance we want, denoted by
DDTW .

To consider the probability distribution of the vectors,
we calculate the symmetric K-L divergence along each di-
mension (e.g., the i-th dimension) as

DK−L (i) (P||Q) = 1

2
(Dkl(P||Q) + Dkl(Q||P))

= 1

2

⎛
⎝∑

j

P(j)ln
P(j)

Q(j)
+

∑
j

Q(j)ln
Q(j)

P(j)

⎞
⎠ , (1)

where P and Q represents the distribution along one di-
mension of the query and the sound candidate respectively,
and j indexes the histogram bins for that dimension. Due to
the sparsity of hidden neuron activation, many elements of
the feature vectors are close to zero. We convert the feature
values to a logarithmic scale first, and then approximate
the distribution along each dimension with a histogram of
44 bins. Therefore, P and Q are actually the distributions
of the logarithm of the feature values. As a 3-s recording
contains about 114 vectors, we find the histogram can ap-
proximate the distribution well. Finally, the symmetric K-L
divergence in all dimensions are summed together to obtain
the overall symmetric K-L divergence DK−L, which is used
as the distance between the query and the sound. Fig. 5
illustrates the calculation process.

It is noted that this K-L divergence calculation assumes
that different dimensions are independent, which misses the
covariance between different dimensions. This design is to
avoid the curse of dimensionality given the much fewer vec-
tors than dimensions. In addition, the K-L divergence does
not model the temporal evolution that can be very important
in describing the similarity between sounds. However, com-
pared to the DTW distance, the K-L divergence is easier to
compute and may work better when the temporal evolution
of the sound is not imitated well.

frame

Imitation Query Concept Candidate
P1
P2
P3

P600

Q1
Q2
Q3

Q600

K-L1
K-L2

K-L600

K-L3

frame

Fig. 5. K-L divergence calculation.

Given their complementary nature, we also propose to
combine DK−L and DDTW in an L-1 space, i.e., summing
them as another patch-level distance. To make sure that
they are of the same scale, we normalize them by their
maximal values before the summation. The final distance
is thus calculated as

D = DK−L

max(DK−L)
+ DDT W

max(DDT W)
. (2)

4.1.2 Recording-Level Distance
In building the supervised system in Sec. 3.1, we adopted

an early fusion technique to summarize the sequence of
feature vectors of a vocal imitation with one single feature
vector of their six statistics. This greatly reduces size of the
representation and computation. Here we adopt the same
idea to calculate a recording-level distance. To do so, both
the imitation query and the sound candidate is represented
by a 7200-d feature vector that includes the six statistics
of each of the 1200 dimensions. Here in the recording-
level setting delta components of the feature vectors are
included because the distance calculation does not cover
temporal evolution. Then the cosine distance between the
two feature vectors is calculated by

dcos = 1 − < xs, xt >

||xs || · ||xt || , (3)

where xs and xt represent the feature vector for vocal imi-
tation and sound candidate, respectively.

The cosine distance compares the angle between two vec-
tors. It increases when the angle increases. One advantage
of cosine distance over Euclidean distance is that it discards
the magnitude, hence making the distance less affected by
the volume mismatch between the imitation and the sound
candidate.

The cosine distance is similar to the K-L divergence pre-
sented before in the sense that both calculate the distribution
mismatch between the query and candidate and ignores the
temporal information. Compared to the K-L divergence,
the cosine distance is based on a more compact representa-
tion, is easier to compute, and considers the relation across
dimensions. If the retrieval performances are similar, co-
sine distance is preferred as sounds in the library can be
represented by a single vector.

6 J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July

PAPERS SUPERVISED AND UNSUPERVISED SOUND RETRIEVAL BY VOCAL IMITATION

Fig. 6. Distances between a vocal imitation and sound candidates
of different acoustic instruments.

4.2 Sound Retrieval
Distances between the imitation query and all sound can-

didates are then ranked, and candidates with the shortest
distances are returned to the user.

Fig. 6 shows an example of sound retrieval after patch-
level distance calculation between a vocal imitation query
for “Marimba hit with a rubber mallet” and 20 sound can-
didates within the category of acoustic instruments. Most
pitched sounds are of the same pitch. We see that the
target sound “Marimba hit with a rubber mallet” is in-
deed the closest to the origin (the vocal imitation) in this
2-d space. After listening to the sound candidates, we find
some interesting aspects. The closest candidates (e.g., “Vi-
braphone (sustained),” “Thai gong,” “Violin (plucked),”
“Tambourine,” and “Piano”), including the target sound,
are all percussive sounds except “Vibraphone (bowed).”
Their K-L divergences are smaller than other candidates.
We argue that this is because percussive sounds have a wider
dynamic range than non-percussive sounds in each dimen-
sion, and this is captured by the K-L divergence. In addition,
the several furthest candidates (e.g., “Triangle,” “Orches-
tra bells,” and “Wind gong”) have very different frequency
distributions in the CQT spectrogram from the vocal imita-
tion, even though they are also percussive. Therefore, their
1200-d feature vectors obtained by passing the spectrogram
through the SAE are very different from those of the imi-
tation as well. This makes both their K-L divergences and
the DTW distances large.

5 EXPERIMENTS

We conduct experiments to answer the following ques-
tions: (1) how do the automatically learned features com-
pare with handcrafted features used in existing systems in
both supervised and unsupervised settings in terms of re-
trieval performance? (2) How does the unsupervised system
compare with the supervised system? (3) How do different
distance calculations compare with each other?

5.1 Dataset
VocalSketch Data Set v1.0.4 [12] is adopted in our exper-

iments. This dataset includes recordings of real life sound
concepts in four categories, i.e., Acoustic Instruments,
Commercial Synthesizers, Everyday, and Single Synthe-
sizer. In each above category, there are 40, 40, 120, and
40 sound concepts respectively. In addition, each sound
concept (real-world sound) in the dataset has around 10 to
20 vocal imitations obtained by people with different gen-
der, various age range, nationalities, language skills, mu-
sic backgrounds, etc., through Amazon’s Mechanical Turk.
There are two types of vocal imitations. One is to imitate
in response to a reference sound recording. For example,
the Amazon Turker is asked to listen to a recording of car
horn first and then imitate the sound concept. The other
one is to imitate in response to descriptive text labels, i.e.,
the Amazon Turker only has access to the word car horn
and then imitate the sound concept based on his/her un-
derstanding. We only use the first type of vocal imitations
in our experiments for evaluation purposes. Although the
second type provides users more freedom and are closer to
real-world situations, the similarity between the imitation
and the target recording can be questionable in some cases,
making the evaluation difficult, especially in the unsuper-
vised setting. A detailed description of the sound concepts
across all the categories is shown in Table 1.

5.2 Evaluation Measures
We use two measures to evaluate the system perfor-

mance: (1) classification accuracy for the supervised sys-
tem, as it is highly related to the sound retrieval perfor-
mance. It is defined as the percentage of correctly classi-
fied imitations among all imitations within one of the four
categories of the dataset. The rationale is that the user is
clear about which category the target sound lies in when
the imitation is made. (2) Mean Reciprocal Rank (MRR),
for both the supervised and unsupervised systems. It is
calculated as

M R R = 1

Q

Q∑
i=1

1

ranki
, (4)

where ranki is the rank of the correct sound concept in
retrieved sound list for the textiti-th vocal imitation; Q is the
total number of testing vocal imitations. MRR ranges from 0
to 1 with a higher value for a better retrieving performance.
A value of 1 means that the correct concept is always the
top retrieving candidate. While a value of 0.5 suggests that
the correct concept is ranked the 2nd among all concepts,
on average. Again, MRR is calculated within one of the four
categories.

5.3 Results of the Supervised System
5.3.1 Experimental Setup

For convenience, here we interchangeably use the term
sound concepts with classes. In the four categories, we use
vocal imitations from half of all the sound concepts to train
the stacked auto-encoder for automatic feature learning.

J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July 7

ZHANG AND DUAN PAPERS

Table 1. Description of the VocalSketch v1.0.4 dataset [12].

Category Sound Concept No. Concept

Acoustic Instruments Orchestral instruments playing a single note with the pitch C in an appropriate octave 40
Commercial Synthesizers Various recordings from Apples Logic Pro music production suite 40
Everyday A wide variety of acoustic events in everyday life 120
Single Synthesizer A single 15-parameter subtractive synthesizer playing a note with the pitch C 40

Then we use the rest half of the sound concepts to train and
test the multi-class classifier within each category. This par-
tition process helps us to prevent the multi-class classifier
over-fitting sound concepts whose vocal imitations have
been used in learning the feature representations. For the
multi-class training and testing, there are 10 vocal imita-
tions for each sound concept. Ten-fold cross validation is
used to calculate the results.

5.3.2 Baseline Method
We compare the proposed system to a baseline system

described in [14]. In that paper the authors first extract
472-d features including global descriptors and time-
varying descriptors from each vocal imitation by the Timbre
Toolbox [15]. Then features are fed to Weka [27] for SVM
classification. A C-SVC classifier with an RBF kernel is
again used, and the cost of constraints violation parameter
C is set to 1000 as well to obtain the highest classification
accuracy. Therefore, the baseline system only differs from
the proposed system at the feature extraction stage.

5.3.3 Results
Table 2 shows performance comparisons between the

proposed supervised system and the baseline system. We
adopt 10-fold cross validation to avoid over-fitting. Several
interesting results can be observed as the following.

First, both the proposed and baseline systems achieve
significantly higher classification performance than random
guesses. Note that random guess classification accuracies
of the four categories would be 5%, 5%, 1.67%, and 5%,
respectively. In addition, as shown in Table 2, the highest
MRR (0.5822) of the proposed system is obtained by Single
Synthesizer. This indicates that the correct sound concept is
ranked between the 1st and the 2nd among the 20 concepts
in that category, on average. The lowest MRR (0.3881) is
obtained by Commercial Synthesizers. This value still tells
that the correct sound concept is ranked between the 2nd
and the 3rd among the 20 concepts in the category, on av-
erage. This indicates that the proposed supervised learning
framework for vocal imitation recognition and retrieval is
feasible and promising.

Second, the average classification and sound retrieval
performance of the proposed system outperforms that of
the baseline in all categories except Commercial Synthe-
sizers. Higher values are shown in bold. This supports our
claim that features learned automatically are more suitable
than handcrafted features for vocal imitation recognition.
This improvement is quite significant in the Single Synthe-
sizer category whose semantic meanings are ambiguous.
One possible reason for this improvement is that the Tim-

bre Toolbox only extracts surface-level features. While the
automatically learned features are able to reveal deeper
connections between the vocal imitation and target sound
concept.

Finally, we compare performances in different cate-
gories. We can see that both systems achieve much better
results in the other three categories than the Commercial
Synthesizer category, even including the Everyday category
that has much more (60) classes than the other categories
(20). After listening through all sounds and their imitations,
we think that this is mainly because sounds in the other three
categories are easier to imitate. Sounds in the Commercial
synthesizer category, however, are more complex. Most of
them contain multiple acoustic aspects such as transients,
noise, and modulations on pitch and timbre. Therefore, they
are more difficult to imitate and less consistency is expected
among different people’s imitations.

5.4 Results for the Unsupervised System
5.4.1 Experimental Setup

Similar to the supervised system, we use vocal imita-
tions from half of all the sound concepts to train the stacked
auto-encoder for feature learning, and the second half of the
sound concepts for distance calculation and retrieval per-
formance evaluation. Eventually, the unsupervised system
is comparing vocal queries with real-world sounds, relying
that the feature representations are similar enough in the
two domains.

5.4.2 Comparison Methods
We compare four versions of the proposed system and a

baseline system. Three out of the four versions use patch-
level distances: DTW distance, K-L divergence, and their
combination. The fourth version uses cosine distance in the
recording level. For the baseline system, we designed it
based on [14], by adopting the Timbre Toolbox to extract
recording-level features for each vocal imitation and sound
concept recording, and calculating the cosine distance. This
baseline system is to validate the advantage of automatic
feature learning over handcrafted features for our unsuper-
vised sound retrieving task.

5.4.3 Results
Fig. 7 shows the performance comparisons. We describe

several interesting observations in the following.
First, all four versions of the proposed system (the first

four boxes in each category panel) outperform the baseline
system in all categories. This indicates that the automati-
cally learned features are more suitable than the carefully

8 J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July

PAPERS SUPERVISED AND UNSUPERVISED SOUND RETRIEVAL BY VOCAL IMITATION

Table 2. Classification and retrieving performance between the proposed and baseline system.

Category Accuracy (Proposed) MRR (Proposed) Accuracy (Baseline) MRR (Baseline)

Acoustic Instruments 35.50% 0.5437 27.00% 0.5114
Commercial Synthesizers 23.50% 0.3881 29.00% 0.4547
Everyday 27.50% 0.4197 26.33% 0.4168
Single Synthesizer 43.00% 0.5822 30.50% 0.4832

handcrafted features in the unsupervised setting as well.
The highest MRR in our proposed system achieves 0.437
MRR in the Acoustic Instruments category using cosine dis-
tance. This means that on average, the target sound is ranked
around between the 1st and 2nd among the 20 recordings
in that category. For the Everyday category, there is a big
gap between the unsupervised and its supervised counter-
part. This may be due to the larger amount and diversity of
sounds in this category. Nevertheless, the 0.142 MRR value
achieved by DTW + K-L suggests that the target sound is
ranked around the 7th among the 60 recordings in the cate-
gory. It is noted that the MRR measure is very conservative
in describing the system’s performance in practice, since
a user does not necessarily know precisely which sound
he/she wants to retrieve. Sounds that are similar enough to
the query should be all of some interest.

Second, the four versions of the proposed system do not
show much difference. The combined patch-level distance
(DTW + K-L) is slightly better than both DTW and K-L.
It means that the MRR’s obtained by combining of K-L
divergence and DTW distance is better than those using
either K-L divergence or DTW distance individually. This
is because K-L divergence only measures the distribution
difference of features, while DTW distance compares the
difference of temporal evolution.

Finally, the recording-level distance (Cosine) achieves
very similar performance with DTW + K-L. The lowest
MRR value is 0.123 in the Everyday category. It means
the target sound is still ranked between the 8th and 9th
among the 60 recordings within the category. As analyzed in
Sec. 4.1, the cosine-distance version is preferred compared
with DTW + K-L distance, because its computation is much
simpler and each sound in the library can be represented

by a single feature vector instead of a sequence of feature
vectors.

6 CONCLUSIONS

In this paper we proposed approaches to sound retrieval
by vocal imitations. To address the feature representation
challenge of vocal imitations, we employed a two-hidden-
layer Stacked Auto-Encoder (SAE) to learn features au-
tomatically from a large variety of vocal imitations. We
then designed two systems based on the feature represen-
tation. The supervised system views the retrieval problem
as a classification problem of vocal imitations. We used a
multi-class SVM to classify the imitation query to a sound
class in the library. The unsupervised system calculates dis-
tances between the vocal imitation query and each of the
sound candidates in the library and retrieves the closest
ones. We explored different distances at both the patch-
level and recording level. We conducted experiments using
a large vocal imitation dataset. Experiments showed that the
automatically learned features significantly outperformed
handcrafted features used in existing systems in both super-
vised and unsupervised settings. In addition, the retrieving
performance of the unsupervised system is promising as it
does not require training imitation data for the sounds to be
retrieved and can be scaled to larger libraries.

7 FUTURE WORK

For future work, we would like to further evaluate both
systems’ retrieving performance in larger-scale sound li-
braries. We also would like to implement a real, practical
system for users to use and conduct user studies for this

Fig. 7. Sound retrieving performance comparison between the proposed and baseline systems.

J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July 9

ZHANG AND DUAN PAPERS

system. On the technical side, we would like to further im-
prove the automatic feature learning module by exploring
other deep neural networks such as Recurrent Neural Net-
works to model the temporal evolution of vocal imitations,
or Convolutional Neural Networks to model the local corre-
lations of the CQT spectrogram of vocal imitations similar
to image processing.

8 ACKNOWLEDGEMENT

Special thanks go to Mark Cartwright and Bryan Pardo
for generously providing us with the VocalSketch Data Set
v1.0.4.

9 REFERENCES

[1] M. M. Zloof, “Query-by-Example: A Data Base Lan-
guage,” IBM Systems J., vol. 16, no. 4, pp. 324–343 (1977
Dec.). http://dx.doi.org/10.1147/sj.164.0324

[2] A. Kapur, M. Benning, and G. Tzanekakis, “Query-
by-Beating-Boxing: Music Retrieval for the DJ,” Proc.
International Conference on Music Information Retrieval
(Barcelona, Spain, 2004), pp. 170–177.

[3] V. Kharat, K. Thakare, and K. Sadafale, “A Sur-
vey on Query by Singing/Humming,” Int. J. Computer
Applications, vol. 111, no. 14, pp. 39–42 (2015 Feb.).
http://dx.doi.org/10.5120/19608-1484

[4] A. Ghias, J. Logan, D. Chamberlin et al., “Query
by Humming: Musical Information Retrieval in an Au-
dio Database,” Proc. the Third ACM International Confer-
ence on Multimedia (New York, NY, 1995), pp. 231–236.
http://dx.doi.org/10.1145/217279.215273

[5] T. Bertin-Mahieux and D. P. Ellis, “Large-
Scale Cover Song Recognition Using Hashed Chroma
Landmarks,” Proc. Applications of Signal Process-
ing to Audio and Acoustics, 2011 IEEE Workshop
on (WASPAA) (New Paltz, NY, 2011), pp. 231–236.
http://dx.doi.org/10.1109/ASPAA.2011.6082307

[6] J. Serra, H. Kantz, X. Serra et al., “Predictability of
Music Descriptor Time Series and its Application to Cover
Song Detection,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 20, no. 2, pp. 514–525 (2012
Feb.). http://dx.doi.org/10.1109/TASL.2011.2162321

[7] Y. Zhang and Z. Duan, “Retrieving Sounds by
Vocal Imitation Recognition,” Proc. Machine Learning
for Signal Processing, 2015 IEEE 25th International
Workshop on (MLSP) (Boston, MA, 2015), pp. 1–6.
http://dx.doi.org/10.1109/mlsp.2015.7324316

[8] Y. Zhang and Z. Duan, “IMISOUND: An Unsuper-
vised System for Sound Query by Vocal Imitation,” Proc.
Acoustics, Speech and Signal Processing, the 41st IEEE
International Conference on (ICASSP) (Shanghai, China,
2016), pp. 1–5.

[9] S. Kullback and R. A. Leibler, “On Information
and Sufficiency,” The Annals of Mathematical Statistics,
pp. 79–86 (1951 Mar.). http://doi.org/bm59cw

[10] H. Sakoe and S. Chiba, “Dynamic Program-
ming Algorithm Optimization for Spoken Word Recog-
nition,” Acoustics, Speech and Signal Processing, IEEE

Transaction on, vol. 26, no. 1, pp. 43–49 (1978 Feb.).
http://dx.doi.org/10.1109/TASSP.1978.1163055

[11] S. B. Davis and P. Mermelstein, “Comparison
of Parametric Representations for Monosyllabic Word
Recognition in Continuously Spoken Sentences,” Acous-
tics, Speech and Signal Processing, IEEE Transac-
tion on, vol. 28, no. 4, pp. 357–366 (1980 Aug.).
http://dx.doi.org/10.1109/TASSP.1980.1163420

[12] M. Cartwright and B. Pardo, “VocalSketch: Vo-
cally Imitating Audio Concepts,” Proc. the 33rd An-
nual ACM Conference on Human Factors in Comput-
ing Systems (Seoul, South Korea, 2015), pp. 43–46.
http://dx.doi.org/10.1145/2702123.2702387

[13] G. Roma and X. Serra, “Querying Freesound with a
Microphone,” Proc. the First Web Audio Conference (Paris,
France, 2015).

[14] D. S. Blancas and J. Janer, “Sound Retrieval from
Voice Imitation Queries in Collaborative Databases,” pre-
sented at the AES 53rd International Conference: Sematic
Audio (2014 Jan.), conference paper P2-8.

[15] G. Peeters, B. L. Giordano, P. Susini et al., “The
Timbre Toolbox: Extracting Audio Descriptors from Musi-
cal Signals,” J Acous. Soc. Amer., vol. 130, no. 5, pp. 2902–
2916 (2011 Nov.). http://dx.doi.org/10.1121/1.3642604

[16] M. Helén and T. Virtanen, “Audio Query by Exam-
ple Using Similarity Measures between Probability Den-
sity Functions of Features,” EURASIP Journal on Audio,
Speech, and Music Processing, vol. 2010, pp. 1–12 (2010
Jan.). http://dx.doi.org/10.1155/2010/179303

[17] G. E. Hinton, S. Osindero, and Y. W. Teh, “A
Fast Learning Algorithm for Deep Belief Nets,” Neural
Computation, vol. 18, no. 7, pp. 1527–1554 (2006 Jul.).
http://dx.doi.org/10.1162/neco.2006.18.7.1527

[18] H. Lee, R. Grosse, R. Ranganath, et al., “Con-
volutional Deep Belief Networks for Scalable Unsuper-
vised Learning of Hierarchical representations,” Proc.
the 26th Annual International Conference on Machine
Learning (ICML) (Montreal, Canada, 2009), pp. 609–616.
http://dx.doi.org/10.1145/1553374.1553453

[19] G. E. Hinton, L. Deng, D. Yu, et al., “Deep Neural
Networks for Acoustic Modeling in Speech Recognition:
The Shared Views of Four Research Groups,” Signal Pro-
cessing Magazine, vol. 29, no. 6, pp. 82–97 (2012 Nov.).
http://dx.doi.org/10.1109/MSP.2012.2205597

[20] E. J. Humphrey, J. P. Bello, and Y. LeCun, “Mov-
ing beyond Feature Design: Deep Architectures and Au-
tomatic Feature Learning in Music Informatics,” Proc. the
13th International Society for Music Information Retrieval
Conference (ISMIR) (Porto, Portugal, 2012), pp. 403–408.

[21] G. E. Hinton and R. R. Salakhutdinov, “Reduc-
ing the Dimensionality of Data with Neural Networks,”
Science, vol. 313, no. 5786, pp. 504–507 (2006 Jul.).
http://dx.doi.org/10.1126/science.1127647

[22] H. Lee, A. Battle, R. Raina, et al., “Efficient
Sparse Coding Algorithms,” Proc. Advances in Neural
Information Processing Systems (Vancouver, Canada,
2006), pp. 801–808.

[23] C. Schörkhuber and A. Klapuri, “Constant-Q Trans-
form Toolbox for Music Processing,” Proc. the 7th Sound

10 J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July

PAPERS SUPERVISED AND UNSUPERVISED SOUND RETRIEVAL BY VOCAL IMITATION

and Music Computing Conference (Barcelona, Spain,
2010).

[24] E. M. Mugler, J. L. Patton, R. D. Flint, et al., “Direct
Classification of All American English Phonemes Using
Signals from Functional Speech Motor Cortex,” J. Neu-
ral Engineering, vol. 11, no. 3, pp. 035015 (2014 May).
http://dx.doi.org/10.1088/1741-2560/11/3/035015

[25] T. F. Wu, C. J. Lin, and R. C. Weng, “ Probability
Estimates for Multi-Class Classification by Pairwise Cou-
pling,” J. Machine Learning Res., vol. 5, pp. 975–1005
(2004 Dec.).

[26] C. C. Chang and C. J. Lin, “LIBSVM: A Li-
brary for Support Vector Machines,” ACM Transac-
tions on Intelligent Systems and Technology (TIST),
vol. 2, no. 3, pp. 1–27 (2011 Apr.). Software avail-
able at http://www.csie.ntu.edu.tw/∼cjlin/libsvm. http://
dx.doi.org/10.1145/1961189.1961199

[27] M. Hall, E. Frank, G. Holmes et al., “The
WEKA Data Mining Software: An Update,” ACM
SIGKDD Explorations Newsletter, vol. 11, no. 1, pp.
10–18 (2009 Nov.). http://dx.doi.org/10.1145/1656274.
1656278

THE AUTHORS

Yichi Zhang

Yichi Zhang is a second-year Ph.D. candidate in the
Department of Electrical and Computer Engineering at
University of Rochester, in the AIR Lab under the super-
vision of Prof. Zhiyao Duan. He recived his M.S. degree
in optical engineering focusing on optical fiber commu-
nications and DSP algorithms from Huazhong University
of Science and Technology in 2014, under the supervision
of Prof. Changjian Ke. He received his bachelors degree
in electrical and information engineering from Wuhan
Univeristy of Technology in 2011. His research inter-
ests include machine learning, deep neural networks, and
computer audition.

Zhiyao Duan

•
Zhiyao Duan is an assistant professor in the Electri-

cal and Computer Engineering Department at University
of Rochester. He received his B.S. and M.S. in automa-
tion from Tsinghua University, China, in 2004 and 2008,
respectively, and received his Ph.D. in computer science
from Northwestern University in 2013. His research inter-
est is in the broad area of computer audition, i.e., design-
ing computational systems that are capable of analyzing
and processing sounds, including music, speech, and en-
vironmental sounds. Specific problems that he has been
working on include automatic music transcription, multi-
pitch analysis, music audio-score alignment, sound source
separation, speech enhancement, and sound retrieval.

J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July 11

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'AP_Press'] Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

