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Q: How to search for a sound that matches the concept in your head?
A: Current ways: through its name or other semantic labels.

Q: What if you don’t reme mber its name, or what you are looking for
simply doesn’t have a semantic meaning?

» Dog barking sound: infantile bark
» Synthesized sound:

threat bark

Proposed System

[ Pre-processing }{Feature Extraction]—»[ Classification ]—{ Sound Retrieval]

Pre-processing:

Convert imitation audio into spectrogram by Constant-Q Transform
(CQT), then segment it into overlapping patches.
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Feature Extraction:

Use Stacked Auto-encoder (SAE) to learn features from training
patches automatically.
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Classification & Retrieval:

Use multi-class Support Vector Machine (SVM ) to ge nerate proba bility

output for concept retrieval. (Limitation: close-set scenario)
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Table 1. Description of the VocalSketch v1.0.4 dataset
ChaIIenes Category # classes Sound Concepts
i . . . : A ) Orchestral instruments playing a single note with the
A big challenge in vocal imitation recognition is feature extraction. : coustic 40 il € (fnar cpEmphE e diese fred
_ . . . instruments h
» People tend to imitate different aspects for different recordings: instrument)
. : Commercial 20 Various recordings from Applée’s Logic Pro music
car horn: [ ] cat: [ ] guitarnote: i ] synthesizers production suite
. . . . Everyday 120 A wide variety of acoustic events in everyday life

» Even for the same recording, different people imitate differently: Recordings from a single 15-parameter subtractive
car horn 1: car horn 2: car horn 3: Single synthesizef 40 synthesizer playing a note with the pitch C (ocave

varies depending on the parameter settings)

Automatic Feature Learning

Table 2. Recording-level 10-fold cross validation results.

Proposed MFCC
Category # classes
Accuracy MRR Accuracy MRR
 eosie 17 23.61% | 0.4259 | 21.94% | 0.3789
instruments
Commerkl 13 20.00% 0.3577 12.69% | 0.2960
synthesizers
(a) auto- (b) stacked Everyday 48 10.71% 0.2666 10.00% 0.2368
encoder auto-encoder Single synthesize 40 12.00% 0.2732 6.25% 0.2188
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