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ABSTRACT
Accurate estimation of note onset timing is important for
music ensemble performance analysis and synthesis. In
this study, we present a method for the detection of onsets
from polyphonic mixtures, using score information. First, a
MIDI score is aligned to the audio signal using dynamic time
warping, and pitches of performed notes are refined using a
multi-pitch estimation technique. Notes in a signal are then
isolated using a spectral masking method, based on the av-
erage harmonic structure learned from each source. Onset
timing is finally estimated by maximizing the time derivative
of the energy curve of the note within an observation win-
dow. We show that this method significantly improves the
onset timing estimation accuracy, measured by both the align
rate and onset time deviation, and outperforms a state-of-art
reference method.

Index Terms— Microtiming, onset detection, score
alignment, multi-pitch estimation

1. INTRODUCTION

In musical timing research, a number of tasks ranging from
ensemble performance analysis [1] to the synthesis and mod-
elling of musical groups [2] rely on high-resolution onset
annotations, captured from multiple musicians performing
simultaneously. In most cases, these annotations are cap-
tured empirically from isolated instrument recordings, as to
reduce bleed from other sound sources. This means that
datasets are limited and capturing this information is often
time-consuming. Accurate timing information from large
corpuses of musical performance data (e.g. music archives
and digital libraries) would therefore be beneficial as it would
reduce the requirements on data collection and annotation.
Extracting this information is currently unrealistic as group
performances are generally mixed-down into a single channel
recording and no annotations are provided.

Identifying timing parameters from polyphonic record-
ings is particularly challenging due to interference from other
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sources in the mix. Onset detection functions [3] often per-
form well in isolation, but typically rely on clear changes in
spectral or temporal energy [4, 5]. For polyphonic record-
ings, beat tracking [6] systems are able to accurately locate
beat-markers at groups of concurrent temporal events, and if
musical notation is available, score-alignment systems [7] are
able to map between symbolic and signal-level representa-
tions of musical signals.

Audio-score alignment has been an active research topic
for decades, in which early approaches were based on offline
frameworks such as Dynamic Time Warping (DTW) [7, 8].
In this case, the algorithm requires access to the entire au-
dio stream before the process starts, which limits the sys-
tem’s potential applications to pre-recorded music. To enable
real-time applications such as live music performance follow-
ing, methods based on online DTWs [9], and Hidden Markov
Models (HMM) [10] were proposed. These algorithms how-
ever, are more challenging to design and typically achieve
lower alignment accuracies.

Microtiming in the context of score-alignment is consid-
ered to be the asynchrony of an event with respect to an align-
ment point. These asynchronies have been investigated using
DTW-based offline techniques [11, 12, 13, ?] and are con-
sidered to represent the expressive characteristics of a per-
former. In this study, we focus on extracting accurate onset
times from polyphonic recordings using score alignment to
first locate note-positions, then a refinement process is applied
to each event to identify the asynchrony of each instrument
from the note position. Experiments on polyphonic pieces
show that the proposed method significantly outperforms a
state-of-the-art method. The organization of this paper is as
follows: Section 2 introduces the proposed model, including
the score alignment process, methods for isolating sources in
a polyphonic mixture, and microtiming estimation. Section
3 presents the experimental procedure, and Sections 4 and 5
present the results and discussion respectively.

2. PROPOSED MODEL

To estimate microtiming in polyphonic mixtures, we propose
a model (shown in Fig. 1), which first uses a DTW-based



offline audio-score alignment algorithm to map the note posi-
tions of a MIDI score to frames in the STFT of an audio sig-
nal. We then estimate the refined fundamental frequency f0 of
each note around the score-notated pitch using a multi-pitch
estimation algorithm. Notes with the same score-notated on-
set are mapped to the same audio position, and we analyze the
polyphonic audio signal around this position to estimate the
microtimings of these notes.

To approximate the microtiming of each note n, an obser-
vation window ωn comprising Mk frames is centered around
the mapped note onset position, and a harmonic spectral mask
(Hn) is constructed for each source. We calculate the energy
envelope from the extracted signal across the window by sum-
ming the product of the mask and the corresponding magni-
tude spectrum at each frame in an STFT. The refined micro-
timing position is then represented by a peak in the half-wave
rectified first-order derivative of the envelope, which corre-
sponds to a significant increase in harmonic energy.

Audio-

Score

alignment

Calculate 

refined F0

spectral

masking

Harmonic 

Structure

Analysis

Onset 

Detec on

Mixed

Signal

Sum masked

spectral energy

Fig. 1. Illustration of the proposed model for microtiming
estimation on polyphonic mixtures.

2.1. Score Alignment Process

We adopt a commonly used offline Dynamic Time Warp-
ing (DTW) approach [7] to find the optimal alignment be-
tween audio and score, in which we use chroma features
to represent the harmonic content of music. To calculate
the chroma features for each audio frame, the magnitude
spectrum is projected onto 12 dimensions representing the
semitones in an octave. From this, a discrete audio chro-
magram Cha ∈ RC×Laudio

+ is derived, where C = 12 is the
number of pitch classes and Laudio is the number of audio
frames. To calculate chroma features of the symbolic score,
we segment it into short time frames, and for each frame a
binary 12-d vector is calculated, which indicates the presence
(1) or absence (0) of a pitch. The mean length of the score
frames is 0.025 beats, which is a similar scale to the audio
frame hop size (10 ms), given a default tempo at 150 BPM.
Similarly, a discrete score chromagram can be presented as
Chs ∈ RC×Lscore

+ , where Lscore is the number of frames in
the score. We use the Euclidean distance between each pair
of audio and score chroma vectors to derive a local distance
matrix, then obtain a global distance matrix D. D is initial-
ized to have D(0, 0) = 0, D(a, 0) = D(0, b) = inf , for
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Fig. 2. The local distance matrix and the global distance ma-
trix from the Dynamic Time Warping algorithm. The optimal
alignment path is marked as the red line.

all a = 1, · · · , Lscore and b = 1, · · · , Laudio. It can then be
iteratively calculated by:

D(a, b) = d(a, b) + min


D(a− 1, b)

D(a, b− 1)

D(a− 1, b− 1)

. (1)

Fig. 2 illustrates the local and global distances for an excerpt
from our dataset. The optimal alignment path is traced back
from (Lscore, Laudio) to (1, 1) through the global distance cal-
culation process. To accelerate the DTW computations, we
only search alignment paths within a Sakoe-Chiba band of
the distance matrix, which runs along the main diagonal with
a fixed width of 5 seconds.

2.2. Multi-pitch Estimation

Multi-pitch estimation is a challenging task, which can be
alleviated by utilizing score information. This is known as
score-informed pitch estimation or pitch refinement. A well-
aligned score can provide integer MIDI pitch numbers to
serve as reference pitches for each audio frame, where the
main task for pitch refinement is then to estimate the pitch
deviation caused by the variation in tuning or intonation (i.e.,
vibrato, portamento) in real performances.

We apply the multi-pitch estimation algorithm from [14].
A maximum likelihood approach based on spectral modeling
of the peak and non-peak regions is used, where the power
spectrum is the observation and the pitches are the parameters
to be estimated. Instead of implementing the algorithm on the
whole spectrum, we restrict the search space to a radius of
half a semitone around the reference pitch for each note, and
pitches are estimated using a greedy search strategy [10].

2.3. Harmonic Mask

For this study, we consider microtiming to be the asynchrony
between the nth score-aligned note group position, and the
actual onset location for each source at position n. To identify
this, harmonic masks comprising triangular windows around
integer multiples of the refined f0 at each of the score-aligned
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Fig. 3. An example of AHS measurements from our dataset,
for four instruments in the Bach10 dataset.

note positions are constructed for each active instrument. In
this study, we implement two types of mask and then evaluate
the efficacy of each with regard to the timing accuracy of the
model. The magnitudes of harmonics in the first mask decay
such that the hth harmonic has a magnitude of 1/h2. This is
equivalent to a 12 dB/octave decay rate of harmonic energy.
Each mask (H) is therefore a function of f0, at note position
n, as defined by the score alignment technique.

Due to the musical relationship of notes in the same key,
pitch trajectories between instruments performing together
are often correlated. This is caused by overlapping spectral
components due to multiple instruments performing harmon-
ically related pitches at note position n. With an instrument-
invariant harmonic mask, the spectral energy for each frame
also has the potential to be highly correlated. To mitigate the
error caused by correlated masks, we construct a second mask
by extracting the Average Harmonic Structure (AHS) of each
instrument [15]. This is done by finding the mean of each
partial in the harmonic series for a corresponding instrument,
across all of the active STFT frames in a performance. We
do this by weighting the spectrum with triangular windows
centered around integer multiples of the refined f0, each with
a bandwidth of 40Hz. An example of AHS is shown in Fig. 3,
in which the derived AHS is captured from four instruments
in a string quartet.

2.4. Microtiming Approximation

To apply the harmonic mask to the STFT, an observation win-
dow Ωn is centered around each note position, identified by
the score alignment process in Section 2.1, i.e., the time span
of Ωn is [nt−Mk

2 , nt+ Mk

2 ]. The window length Mk is deter-
mined by the smallest inter-note interval of instrument k. We
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Fig. 4. Onset refinement applied to concurrent events per-
formed by four instruments in the Bach10 dataset. Here,
the background illustrates the masked STFT, the red vertical
line represents the note-group location predicted by the score-
alignment algorithm, the green vertical lines are ground truth
onset annotations, and the yellow asterisks are predicted onset
locations.

then use this to generate an energy envelope for each of the k
sources in the mix, as shown in Eq. (2):

En = HnΩn, (2)

where Hn is a (k ×NFFT) matrix representing the harmonic
mask, and Ωn is a (NFFT × Mk) matrix representing a block
of STFT frames, centered around note n. The output En is
then an Mk-length envelope for each of the k-instruments
active at note position n. The microtiming of instrument k
at note n is then estimated by maximizing the first deriva-
tive with regards to time of the kth row of En, defined as
xn,k = max(E′n,k).

Fig. 4 shows this onset refinement process using four in-
struments in a Bach10 chorale dataset [14]. Here onsets are
extracted from concurrent notes being performed by a violin
(V), clarinet (C), saxophone (S) and bassoon (B). The figure
shows the score-aligned note-group location, the ground truth
annotations, and the refined onset locations. For each subplot,
the energy envelopes E′n,k are overlaid onto the correspond-
ing harmonically-masked STFT block.

3. EXPERIMENT

To gauge the performance of the model, we use the Bach10
dataset, which has 10 J.S. Bach four-part chorales, all per-
formed by quartets [14]. Each of the recordings comprise vi-
olin, clarinet, tenor saxophone and bassoon parts. The multi-
track recordings were labeled with onset timing metadata, us-
ing a temporal energy-based onset detector, and corrected by
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Fig. 5. Align rate measured over a range of error thresholds
for two masking methods (H, AHS), the output of the score
alignment process (SA), and a reference method (Ref [5]).

hand. Whilst the dataset was annotated for a previous study,
we applied additional correction to the ground truth annota-
tions due to some inaccuracies.

To evaluate the performance of our model, we use two
performance measures. The align rate metric (as defined in
[16]) is a method for quantifying the number of correctly
aligned note positions to the ground-truth annotations. This is
implemented by measuring the proximity of a predicted event
to a ground-truth event in time. The align rate is then the por-
tion of all events with an absolute error |e| which is less than
a pre-defined threshold. To test the reliability of our method,
we compare it to a reference system developed by Miron et al
[5], across a range of error thresholds between 15 and 200ms.

To evaluate the variability of the system, we calculate the
mean timing error. To do this, the absolute difference be-
tween each of the refined onsets predicted by the algorithm
and the corresponding ground truth is computed. The mean
score is then calculated using Eq. 3.

¯err =
1

J

J−1∑
j=0

|xj − x̂j |, (3)

Here xn is the ground-truth onset location at note n, and x̂n

is the predicted onset location.

4. RESULTS & DISCUSSION

In Fig. 5, we present the results of the align rate measure-
ments, for thresholds of 15, 30, 60, 90, 140, and 200ms. Here,
the results are averaged across all instruments and record-
ings in the dataset, and compared against the raw output of
the score alignment process (SA), and a state-of-art reference
method [5] (Ref). The results show that the AHS method per-
forms the highest in the majority of cases, with over 56% of
onsets correctly aligned at an error threshold of 15ms, over

65% aligned at 30ms, and 95% aligned at 200ms. Results
also suggests that when compared to the output of the score
alignment algorithm and the 1/h2 harmonic mask, the AHS
method works particularly well when |e| ≤ 90ms.

The timing error (TE) of each method, illustrated in Fig.
6, is measured using the same error thresholds and averaged
over all instruments and recordings. Here, all timing errors
which are lower than a given threshold are presented. A ref-
erence method for timing error is not included as compa-
rable results were not available. The results show that the
AHS method consistently has the lowest error, when com-
pared against the score alignment output and the 1/h2 har-
monic mask. When measured at 90ms (86% correctly aligned
events), the mean timing error is less than 25ms, and at 200ms
(95% correctly aligned events), the mean timing error is less
than 35ms. In all cases above a 15ms error threshold, both
of the masking methods show significant improvement (p <
.05) over the output of the score alignment algorithm, sug-
gesting they successfully improve the overall accuracy of the
score alignment process.
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Fig. 6. Mean timing error measured over a range of error
thresholds for two masking methods (H, AHS) and the output
of the score alignment algorithm (SA).

5. CONCLUSION

In this study, we present a model for the estimation of accurate
onset locations in polyphonic music mixtures using a DTW-
based score-alignment method, with harmonic spectral mask-
ing technique. We evaluate two methods for constructing the
harmonic mask, one using an decaying harmonic series, and
one based on the average harmonic structure of the instru-
ment. When evaluated on a dataset of Bach chorales, results
show that the AHS method for constructing a spectral mask
improves both the alignment rate and the timing estimation of
the score alignment algorithm significantly, and outperforms
a state-of-art reference method.
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[5] Marius Miron, Julio José Carabias-Orti, and Jordi Janer,
“Audio-to-score alignment at the note level for orches-
tral recordings.,” in ISMIR, 2014, pp. 125–130.

[6] Masataka Goto, “An audio-based real-time beat tracking
system for music with or without drum-sounds,” Jour-
nal of New Music Research, vol. 30, no. 2, pp. 159–171,
2001.

[7] Nicola Orio and Diemo Schwarz, “Alignment of mono-
phonic and polyphonic music to a score,” in Proceed-
ings of the International Computer Music Conference
(ICMC), 2001.

[8] Roger B Dannenberg and Christopher Raphael, “Music
score alignment and computer accompaniment,” Com-
munications of the ACM, vol. 49, no. 8, pp. 38–43, 2006.

[9] Simon Dixon, “Live tracking of musical performances
using on-line time warping,” in Proceedings of the Inter-
national Conference on Digital Audio Effects (DAFx),
2005.

[10] Zhiyao Duan and Bryan Pardo, “Soundprism: An on-
line system for score-informed source separation of mu-
sic audio,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 6, pp. 1205–1215, 2011.

[11] Johanna Devaney and Daniel PW Ellis, “Handling asyn-
chrony in audio-score alignment,” in Proceedings of
the International Computer Music Conference (ICMC),
2009.

[12] Johanna Devaney, “Estimating onset and offset asyn-
chronies in polyphonic score-audio alignment,” Journal

of New Music Research, vol. 43, no. 3, pp. 266–275,
2014.

[13] Bernhard Niedermayer and Gerhard Widmer, “A multi-
pass algorithm for accurate audio-to-score alignment.,”
in Proceedings of the International Society for Music
Information Retrieval (ISMIR), 2010, pp. 417–422.

[14] Zhiyao Duan, Bryan Pardo, and Changshui Zhang,
“Multiple fundamental frequency estimation by model-
ing spectral peaks and non-peak regions,” IEEE Trans-
actions on Audio, Speech, and Language Processing,
vol. 18, no. 8, pp. 2121–2133, 2010.

[15] Zhiyao Duan, Yungang Zhang, Changshui Zhang, and
Zhenwei Shi, “Unsupervised single-channel music
source separation by average harmonic structure mod-
eling,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 16, no. 4, pp. 766–778, 2008.

[16] Arshia Cont, Diemo Schwarz, Norbert Schnell, and
Christopher Raphael, “Evaluation of real-time audio-to-
score alignment,” in Proceedings of the International
Symposium on Music Information Retrieval (ISMIR),
2007.


