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Introduction

Music metric learning

Music metric learning

Basic methods

Supervised methods
RITML: learns
mahalanobis distance
MLR: learn to rank
SVM-based
...

Unsupervised methods
Mahalanobis distance
PCA
...

Similarity

A

B

C

Which one is odd ?

Relative 
Similarity

Is A similar to B ?

A

B Absolute 
Similarity
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From frame-level to song-level

From frame-level to song-level
Training process

d(x, y) : Rd � Rd � R

Frame-level 
similarity:

� = {x}
query song: 

Train with 
relative similarity

�+ = {x+}
positive song: �� = {x�}

negative song: 

music 
frames 

Testing process

Frame-level 
similarity:

� = {x}
query song: 

�+ = {x+}
positive song: �� = {x�}

negative song: 

music 
frames 

d(x, y) : Rd � Rd � R

{d(x, x+)|�x � �, �x+ � �+}
{d(x, x�)|�x � �, �x� � ��}

Majority-vote

Song-level similarity
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Traditional and deep approaches

Traditional and deep approaches

Traditional methods

Handcrafted
song-level features

Linear projections

Deep learning approaches

Learn features automatically

Highly nonlinear transformations

Success in various domains

None for music metric learning

Our approach

Use deep neural networks to learn
frame-level relative similarities of music
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Data preprocessing

Data preprocessing

�

{x}F

T

audio

log-mel
feature
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Triplet MatchNet

Triplet MatchNet

Network Structure

C. Full-Connect MetricNet

FC1

FC2

FC3 + Sigmoid

conv0

block1

block4

block3

block2

x+

conv0

block1

block4

block3

block2

x
conv0

block1

block4

block3

block2

x�

MetricNetMetricNet

Loss

A. Triplet MatchNet

B. Residual FeatureNet

Global Pooling

1 x 3 conv, 512

1 x 3 conv, 512, /2

1 x 3 conv, 256

1 x 3 conv, 256, /2

1 x 3 conv, 128

1 x 3 conv, 128, /2

1 x 3 conv, 64

1 x 3 conv, 64

F x 3 conv, 64

Input
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Residual block

Residual block

Residual Structure

1 x 1 conv, 256, /2 1 x 3 conv, 256 

ReLU

1 x 3 conv, 256, /2 

+

128 feature maps: (1, t)

ReLU

256 feature maps: (1, t/2)

Advantages

Easier to optimize

Accuracy gain from
deeper model[1]

Behave like ensembles
of shallow networks[2]

1 Kaiming He et al, Deep residual learning for image recognition, CVPR 2016.
2 Andreas Veit et al, Residual networks behave like ensembles of relatively shallow

networks, NIPS 2016.
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Loss function

Final loss

The final loss for training our Triplet MatchNet is:

loss(�,�+,��) =
1

|{x}|
X

x2{x}

( (x) + �(x)).

Where  (x) is the rank-based loss; �(x) is the contrastive loss.
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Loss function

Rank-based loss

Illustration Equation

Rank-based loss

 (x) =
1

|{x�}|
X

x

�2{x�}

max{0, d+
max

� f (x , x�)}

where d

+
max

= max
x

+2{x+} f (x , x+);
f (x , y) is the proposed network’s final output
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Loss function

Contrastive loss

Illustration Equation

Contrastive loss

�(x) = �
P

x

+

P
x

� [log(1 � d

+) + log(d�)]

|{x+}||{x�}|

where d

+ = f (x , x+); d� = f (x , x�)
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Dataset and Evaluation

Dataset and Evaluation

MagnaTagATune

Relative similarity

860 triplets like
(�,�+,��)

993 unique songs

Each song with 29
seconds

Evaluation

Constraints Fulfillment Rate
Portion of triplets that preserve
partial order relationships

10-cross validation

Comparison methods
RITML[1]

MLR[2], RMLR[3]

SVM, Euclidean

1 Daniel Wol↵ et al, Comparative music similarity modelling using transfer learning

across user groups, ISMIR 2015.
2 Brian McFee et al, Metric learning to rank, ICML 2010.
3 Daryl KH Lim et al, Robust structural metric learning, ICML 2013.
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Constraints Fulfillment Rate comparison

Euclidean
SVM
RITML
MLR
RMLR

Proposed

Proposed RMLR MLR RITML SVM Euclidean
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Figure: Constraints Fulfillment Rate by 10-fold cross validation.
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Constraints Fulfillment Rate comparisons

Generalization Capability

Figure: Generalization capability by 10-fold cross validation.
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Better features

Better features extracted by Triplet MatchNet

Method HandCrafted PCA Proposed
RMLR - 65.9 ± 8.3 71.2 ± 7.2
MLR 68.9 61.7 ± 10.5 71.7 ± 6.9

Euclidean 59.8 50.7 ± 6.3 70.6 ± 3.8

Table: Constraints Fulfillment Rate of three baselines working with
di↵erent features.
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Thank you !
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