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Music metric learning

Basic methods Similarity

m Supervised methods
m RITML: learns
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From frame-level to song-level

Training process Testing process
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Traditional and deep approaches

Traditional methods Deep learning approaches
m Handcrafted m Learn features automatically
song-level features m Highly nonlinear transformations
m Linear projections m Success in various domains
m None for music metric learning

Our approach

Use deep neural networks to learn
frame-level relative similarities of music
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Data preprocessing
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Triplet MatchNet

Network Structure

C. Full-Connect MetricNet B. Residual FeatureNet
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Residual block

Residual Structure
(R )
1256 feature maps: (1, t/2) |
R s M ]

27
[©]

2
c

i |

| 1 x 3 conv, 256 | | 1 x 1 conv, 256, /2

t
RelLU
| |
1

| 1x3con,256,/2 |

4
__________ H S ———

Advantages
m Easier to optimize

m Accuracy gain from
deeper modellll

m Behave like ensembles
of shallow networks/?!

! Kaiming He et al, Deep residual learning for image recognition, CVPR 2016.
2 Andreas Veit et al, Residual networks behave like ensembles of relatively shallow

networks, NIPS 2016.
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Final loss

The final loss for training our Triplet MatchNet is:

loss(x, xT,x") = |x1}| Z (1h(x) + o(x)).

xe{x}

Where 1)(x) is the rank-based loss; ¢(x) is the contrastive loss.
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Rank-based loss

llustration Equation

PR RN Rank-based loss

, 7 Positive frames \
/ \
| Query frame \ 1

T

Z max{0,d" . — f(x,x")}

x—€{x"}

where df .. = max ety F(x, xT);
f(x,y) is the proposed network'’s final output

Negative frames
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Contrastive loss

lllustration Equation
Positive frames Contrastive loss
Query frame
\

S5 llog(l - d*) + log(d)]
\ o) = o))

where d* = f(x,xT); d= = f(x,x7)

Negative frames
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Dataset and Evaluation

MagnaTagATune Evaluation
m Relative similarity m Constraints Fulfillment Rate

m Portion of triplets that preserve

m 860 triplets like i s ]
partial order relationships

O6extxT)

= 993 unique songs m 10-cross validation

m Comparison methods
= RITMLM
seconds = MLRE RMLREI
m SVM, Euclidean

m Each song with 29

! Daniel Wolff et al, Comparative music similarity modelling using transfer learning
across user groups, ISMIR 2015.

2 Brian McFee et al, Metric learning to rank, ICML 2010.

3 Daryl KH Lim et al, Robust structural metric learning, ICML:2013.
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Constraints Fulfillment Rate comparison
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Figure: Constraints Fulfillment Rate by 10-fold cross validation.
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Generalization Capability
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Figure: Generalization capability by 10-fold cross validation.
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Better features extracted by Triplet MatchNet

Method HandCrafted PCA Proposed

RMLR - 65.94+83 7124+7.2
MLR 68.9 61.7 &+ 105 71.74+6.9
Euclidean 590.8 50.7+6.3 70.6+3.8

Table: Constraints Fulfillment Rate of three baselines working with
different features.
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