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ABSTRACT

Metric learning for music is an important problem for many
music information retrieval (MIR) applications such as music
generation, analysis, retrieval, classification and recommen-
dation. Traditional music metrics are mostly defined on lin-
ear transformations of handcrafted audio features, and may
be improper in many situations given the large variety of mu-
sic styles and instrumentations. In this paper, we propose a
deep neural network named Triplet MatchNet to learn metrics
directly from raw audio signals of triplets of music excerpts
with human-annotated relative similarity in a supervised fash-
ion. It has the advantage of learning highly nonlinear fea-
ture representations and metrics in this end-to-end architec-
ture. Experiments on a widely used music similarity measure
dataset show that our method significantly outperforms three
state-of-the-art music metric learning methods. Experiments
also show that the learned features better preserve the partial
orders of the relative similarity than handcrafted features.

Index Terms— Metric learning, music similarity, deep
learning, convolutional neural networks

1. INTRODUCTION

Automatically learning metrics to measure music similarity is
an important problem in Music Information Retrieval (MIR)
with many applications including music recommendation,
classification, and search. Compared to data-independent
metrics such as the Euclidean distance, learned metrics often
better capture structures in the data and suit the tasks at hand
[1, 2, 3, 4, 5, 6]. Metric learning is most often conducted
in a supervised fashion: the learning algorithm is trained
on examples with human-annotated ground-truth similarity
ratings. Unsupervised metric learning approaches, such as
Mahalanobis distance, Principal Component Analysis (PCA)
and other dimensionality reduction algorithms, usually do not
achieve as good performance as supervised approaches [7].
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Fig. 1. Structure of the proposed Triplet MatchNet.

The annotation of ground-truth similarities between mu-
sic pairs is difficult and time consuming, as one has to make
sure the annotation criterion is consistent over a large number
of pairs [8]. Therefore, some methods consider to learn and
predict relative similarity [1, 2, 3, 4] instead. One type of rel-
ative similarity is to consider triplets of examples in a dataset
X. Specifically, one example in a triplet is a query χ and the
other two are ranked as a more similar example χ+ and a less
similar example χ− to the query. Then metric learning can be
formulated as the learning of a distance embedding function
f : X × X 7−→ R+ that maps the query closer to the more
similar example than to the less similar one:

f(χ, χ+) < f(χ, χ−),∀χ ∈ X. (1)

For music data, similarity annotations are often at song
level. Metric learning algorithms, however, should perform at



Residual FeatureNet: Convolution and Global Pooling
layer out-size filters shortcut
conv0 1×T F×3, 64, (1, 1) -
block1 1×T 1×3, 64, (1, 1) Identity

1×3, 64, (1, 1)
block2 1×dT /2e 1×3, 128, (1, 2) 1×1, 128, (1, 2)

1×3, 128, (1, 1)
block3 1×dT /4e 1×3, 256, (1, 2) 1×1, 256, (1, 2)

1×3, 256, (1, 1)
block4 1×dT /8e 1×3, 512, (1, 2) 1×1, 512, (1, 2)

1×3, 512, (1, 1)
GP 1×512 - -

Full-Connect MetricNet
layer out-size filters shortcut
FC1 W - -
FC2 W - -
FC3 1 - -

Table 1. Model details: inputs are frames with size C×F×T
(channels’ number× frequency bands’ number × time hops’
number); filters are denoted as ”(frequency bands’ number ×
time hops’ number), filters’ number, (frequency stride, time
stride)”; all activation functions are omitted for brevity; GP
means global pooling; W is determined through experiments.

a much smaller time scale and then achieve song-level simi-
larity through post-processing for two reasons: first, in appli-
cations such as music recommendation, similarity is defined
along short-term aspects such as timbre and harmony; second,
long-term modeling in music is very challenging. Therefore,
one way to balance the above contradiction is to learn frame-
level music metric and further obtain song-level similarity by
majority vote. We utilize this strategy and detail it in Sect.2.

To the extent of our knowledge, no nonlinear metric learn-
ing methods have been applied to MIR. Methods dealing with
relative similarity for music typically learn linear projections
such that distances between similar pairs are minimized while
those between dissimilar pairs are maximized. Typical rela-
tive metric learning methods for MIR include relative infor-
mation theoretic metric learning (RITML) [1], metric learn-
ing to rank (MLR) [3] and an SVM-based approach [4]. These
methods operate on handcrafted song-level features, which
are simple statistics of frame-level features. In addition, linear
projections are unlikely to capture complex patterns in data
that often only emerge after nonlinear transformations.

Deep learning methods are promising in learning nonlin-
ear features from raw data in various domains such as com-
puter vision [9, 10, 11], natural language processing [12] and
MIR tasks [13, 14, 15, 16, 17]. Regarding metric learning,
Han et al.[9] proposed a deep network called MatchNet that
learns similarities between similar and dissimilar image pairs.
To our best knowledge, no deep models have been proposed
for rank-based metric learning nor for music applications.

In this paper, we propose a deep model called Triplet
MatchNet by extending the rank-based metric learning [3] to
end-to-end training framework and take advantages of deep
models that automatically learn nonlinear features from raw
data. As in Fig.1A, Triplet MatchNet comprises of a triplet
of residual nets [18] at bottom for feature extraction and two
fully connected nets on top to obtain distances between query
χ and the similar/dissimilar examples χ+/χ−. Our model
is closely related to MatchNet [9]. However, MatchNet is
classification-based and models absolute similarity, while
Triplet MatchNet is rank-based and learns from relative simi-
larity of audio triplets. Moreover, relative similarity is much
easier to collect for music data and the proposed method is
preferred. We conduct experiments on the MagnaTagATune
music similarity dataset [19] and compare our approach with
three state-of-the-art methods. Results show that the proposed
method surpasses the comparison methods significantly on
the constraints fulfillment task. Further analyses show that
features learned by the proposed method (outputs of the
residual net) can better preserve distance constraints.

2. METHOD

As described in Eqn.(1), our goal is to learn a distance em-
bedding function f from triplets of songs < χ,χ+, χ− >. In
order to model the rich variations of audio signals of the mu-
sic, we propose to first learn the embedding at frame-level,
and then calculate song-level relative similarity by majority
vote. Let us denote the frame set of song χ as {x}, and those
of songs χ+/χ− as {x+}/{x−} respectively. Then the dis-
tance embedding function learned by Triplet MatchNet is:

f(x, x+) < f(x, x−) ∀x ∈ χ, x+ ∈ χ+, x− ∈ χ−. (2)

The above formulation tries to learn an f that maps all frames
of the query song χ closer to any frame of the more similar
song χ+ than to any frame of the less similar song χ−.

2.1. Data Preprocessing

We down sample all songs to 16 kHz, apply Hann window
and STFT with three window lengths (1024, 2048, and 4096
points) and the same hop size of 512 to get three magnitude
spectrograms. Next, we apply 80-band mel-scale triangular
filter ranging from 0 Hz to 8 kHz to obtain mel-scale spec-
trograms. We normalize each frequency band to zero mean,
unit variance and stack the three spectrograms to make a 3-D
tensor. Finally, we aggregate every 50 (about 1.824 seconds)
adjacent windows without overlap to form frames. Note that
the length of a bar in pop songs is around 2 seconds, frames
generated above are capable of capturing meaningful timbre
and harmony changes. To sum up, each song is divided into
a set of frames that form inputs in Fig.1 and each frame is a
3× 80× 50 tensor. Thus in Table 1, C = 3, F = 80, T = 50.
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2.2. Network Architectures

Triplet MatchNet is a deep network (Fig.1A) which simul-
taneously learns a residual feature net (Fig.1B) and a fully
connected metric net (Fig.1C). Details are shown in Table 1.

We utilize the residual networks [18] for feature extraction
(Figure1B) due to its performance gains from the relieving of
gradient vanishing problem by shortcut connections. A set of
64 convolutional filters with size (F , 3) act as the beginning
convolutional layer, resulting in 64 feature maps with size (1,
T ). These filters span the entire frequency range to allow no
shift invariance along frequency axis. We then add 4 consec-
utive temporal residual blocks with 1× 3 filters (we only ap-
ply transformations on temporal domain afterwards) follow-
ing design rules by ResNet [18] and VGG [20]. We perform
downsampling by convolutional layers with strides of 2. Fea-
ture extraction stage ends with a global mean-pooling. The
three residual networks (Fig.1B) share the same parameters;
updates for either net will be applied to all the nets.

As shown in Fig.1B, the main part of the residual network
contains 4 blocks, each a stack of two convolutional layers
and the kernel sizes of all the temporal convolutions are 1×3
with zero paddings when necessary such that the temporal
resolution is conserved or halved when the convolutional op-
eration is carried out with stride 2. We take block3 as an ex-
ample and detail its structure in Fig.2. Rectangles with dashed
borders are input and output feature maps.

Our metric networks (Fig.1C) are inspired by recently
proposed methods that make use of fully connected layers to
calculate distances between extracted features [9, 10, 11]. It
comprises of two fully connected layers with ReLU nonlin-
earity and another fully connected layer with sigmoid as the
final output. Same as the residual networks, the two metric
nets share parameters and we update them at the same time.

2.3. Network Training

For a triplet of songs < χ,χ+, χ− > described in Eqn.(1),
we represent them as frame sets {x}, {x+} and {x−} as de-
scribed in Sect.2.1. The two distances output by the Triplet

MatchNet can then be represented as:

d+ = f(x, x+) = h(g(x), g(x+)),

d− = f(x, x−) = h(g(x), g(x−)), (3)

where g : RC×F×T 7→ R512 and h : R512 × R512 7→ [0, 1]
denote operations by residual networks and metric networks.

In traditional rank-based metric learning [3], the undiffer-
entiable partial order is used as an objective to be maximized.
We modify it to be a continuous loss suitable for our model:

ψ(x) =
1

|{x−}|
∑

x−∈{x−}
max{0, d+max − f(x, x−)}, (4)

where d+max = maxx+∈{x+} f(x, x+) is the maximum value
among all the distances from x to frames in the more similar
song. Besides the description of partial order in Eqn.(4), we
force distances between query frame x and the more similar
song {x+} to 0 while distances between x and {x−} to 1:

φ(x) = −
∑

x+

∑
x− [log(1− d+) + log(d−)]

|{x+}||{x−}|
. (5)

Eqn.(5) maximizes the manifold margin between positive and
negative frames, which in turn benefits the conservation of the
partial order. Thus, the final loss for a triplet of songs fed into
Triplet MatchNet for training as shown in Fig.1A is:

loss(χ, χ+, χ−) =
1

|{x}|
∑

x∈{x}
(ψ(x) + φ(x)). (6)

Given the trained model, we calculate d+/d− in Eqn.(3) for
any frame triplet (x, x+, x−) in song triplet and d+ < d−

means that the frame-level constraint is fulfilled. We can fur-
ther determine whether the song-level constraint is reserved
by majority voting through considering all the frame triplets.

3. EXPERIMENTS

3.1. Setup

We evaluate the proposed method on the widely used Mag-
naTagATune1 dataset. It contains both audio recordings and
song-level relative similarity annotations in the form as “χ+
is more similar to χ than χ−”. Following the preprocessings
in [8], we obtain a total of 860 triplet constraints (χ, χ+, χ−)
involving 993 unique songs, each 29-second long. We eval-
uate our model and the baselines using the constraints fulfill-
ment rate (CFR) [1, 2, 3, 4], which is defined as the percent-
age of song-level constraints satisfied by the learned distance
function. For the proposed method, we use the Adam [21] op-
timization algorithm and dropout with p = 0.5 on the first two
fully connected layers of our metric network to avoid overfit-
ting. The dimension of the first two dense networks, W , is set
to 512, as we find it provides the best performance. We com-
pare the proposed method with five baselines: RITML [1],
RMLR [2], MLR [3], SVM [4] and the Euclidean distance.

1http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset



Fig. 3. Constraints Fulfillment Rate (CFR) comparison with
10-fold cross validation. Triplet MatchNet and RMLR are run
by ourselves hence are shown as boxplots. Features input to
RMLR are 512-d PCA-reduced mel-features. The other base-
lines are shown as barplots, whose values are taken from [1],
which reports average CFR through 10-fold cross validation
on the same dataset with a likely different partition.

Fig. 4. Generalization capability with 10-fold cross validation
when the training set size changes. The horizontal axis indi-
cates the number of folds included in the training set. Mean
(dots) and standard deviation (bars) are reported.

3.2. Results and Discussions

For the first experiment, we report the overall CFR com-
parison among the proposed method and the five baselines
through 10-fold cross validation following [1, 8]. Since the
baseline methods differ from the proposed method in both the
model and features and we do not have access to their fea-
tures, we cannot run these baselines in their original settings.
Fortunately, four baselines (MLR, RITML, SVM, and Eu-
clidean) have been compared and reported with their average
CFR through 10-fold cross validation on the same dataset in
[1]. Therefore, we simply report these average CFR values
as barplots in Fig. 3. For the RMLR baseline, we run it by
ourselves and generate a boxplot as the proposed method. We

Method HandCrafted PCA Residual
RMLR - 65.9 ± 8.3 71.2± 7.2
MLR 68.9 61.7 ± 10.5 71.7± 6.9

Euclidean 59.8 50.7 ± 6.3 70.6± 3.8

Table 2. Constraints Fulfillment Rate (CFR) of three base-
lines working with different features: the original hand-
crafted features as reported in [1], the vectorized mel-features
reduced to 512-d by PCA, and features learned by residual
networks of the proposed approach.

compress the 3 × 80 × 50 3D mel-spectrograms via PCA to
maintain 95% of the variance as the feature inputs for RMLR
following [2]. We empirically set C = 10−2, λ = 10−3 and
fix ∆ to AUC for training. For further details of choosing
∆, please refer to [3]. We can see that our model outper-
forms all baselines by a large margin. Moreover, it is neces-
sary to note that [1] combines a variety of features such as
chroma, timbre and tempo to form song-level features while
our model automatically learns representations from raw mel-
scale spectrograms. This suggests that the features learned
by the highly nonlinear deep networks may better capture the
music similarity than the handcrafted features.

The second experiment evaluates how these methods gen-
eralize when the size of training data changes as in Fig. 4.
Again, we randomly split the dataset into 10 folds. We run the
experiment 10 times, each time we test the CFR on one fold
and gradually enlarge the training set, which is composed by
a subset of the other folds. By gradually enlarging the train-
ing set, performances of our method and the baselines become
better in general. The proposed method shows better perfor-
mance over the baselines across almost all sizes of the training
set except for those cases when training sets are too small.

The third experiment exhibits effectiveness of the features
extracted by the proposed method. We use it as a feature ex-
tractor and combine it with three baselines (RMLR, MLR,
and Euclidean). We report the average CFR of a 10-fold cross
validation in Table 2. We compare three settings: 1) the re-
sults reported in [1] where their original handcrafted features
are used, 2) the PCA-reduced mel-features as described in the
first experiment, and 3) the features extracted by the residual
networks in the proposed method. The results show that fea-
tures learned by our residual networks better preserve partial
orders and boost performance of the traditional algorithms.

4. CONCLUSIONS

We proposed a deep structure to learn nonlinear metrics from
relative similarity annotations of song triplets. Thanks to the
powerful capability of deep representations of the residual
network and the complex nonlinearities of the fully connected
metric network, we achieved significantly better performance
than the traditional music metric learning methods.
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