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ABSTRACT

In music performance, vibrato is an important artistic ef-
fect, where slight variations in pitch are introduced to add
expressiveness and warmth. Automatic vibrato detection
and analysis, although well studied for monophonic mu-
sic, has rarely been explored for polyphonic music, be-
cause of the challenge in multi-pitch analysis. We propose
a video-based approach for detecting and analyzing vibrato
in polyphonic string music. Specifically, we capture the
fine motion of the left hand of string players through opti-
cal flow analysis of video frames. We explore two meth-
ods. The first uses a feature extraction and SVM classifica-
tion pipeline, and the second is an unsupervised technique
based on autocorrelation analysis of the principal motion
component. The proposed methods are compared with
audio-only methods applied to individual instrument tracks
separated from original audio mixture using the score. Ex-
periments show that the proposed video-based methods
achieve a significantly higher vibrato detection accuracy
than the audio-based methods especially in high polyphony
cases. Further experiments also demonstrate the utility of
the approach in vibrato rate and extent analysis.

1. INTRODUCTION

Vibrato is an important artistic effect in musical perfor-
mance. Instrument players use vibrato to color a tone and
express emotions. Physically, vibrato is generated by pitch
modulation of a note in a periodic fashion [23]. Important
characteristics of vibrato include rate and extent of this pe-
riodic modulation [8]. These characteristics vary signif-
icantly across instruments, cultures, and personal styles.
Compared to woodwind and brass instruments, vibrato is
more pronounced in strings.

Automatic vibrato detection and analysis is an impor-
tant topic in music information retrieval (MIR) with broad
impacts. It is useful in musicological studies to compare
different articulation styles of different performers and in-
struments [2]. It is critical in expressive performance ped-
agogy for singing [19] and violin [28]. It also facilitates
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Figure 1. The proposed method tackles the challenging
problem of vibrato analysis for polyphonic music by ex-
ploiting information from the video to augment audio anal-
ysis. (a) The ground-truth pitch contour of a cello vibrato
note in a violin-cello duet performance showing a clear
vibrato pattern, (b) The estimated pitch contour of this
note from the audio mixture using a state-of-the-art score-
informed pitch detection method showing corruption due
to the interference from the other source, (c¢) The left hand
motion along the fingerboard of the cello player extracted
from video analysis is clean and well correlated with the
ground-truth pitch contour. The hand motion profile ex-
tracted from video is used for vibrato analysis in this paper.

other MIR tasks such as singing voice extraction [12],
harmonic-percussive decomposition [21], and audio-visual
source association [16]. Vibrato analysis also provides
the statistical basis for vibrato synthesis of musical instru-
ments [13], singing voices [11], and bird songs [4], through
which the synthesized sounds are more realistic and ex-
pressive.

Most of the existing methods for automatic vibrato de-
tection and analysis are audio-based with a focus on mono-
phonic sources, where vibrato can be easily characterized
from the pitch trajectory estimated through a monophonic
pitch detection algorithm. Methods include thresholding
the pitch drift within each note [3], calculating the median
distance of the neighboring peaks/troughs of the pitch con-
tour [9], analyzing the spectral peak after a Fourier trans-
form of the pitch contour [25], cross-correlation analysis
of frequency/amplitude modulation [26], and a nonlinear
sinusoidal decomposition method [27].

Few approaches have focused on polyphonic music, and
when they do, they only characterize vibrato of a single
source (usually the solo instrument) in the mixture. This



is mainly due to the difficulty of reliably estimating simul-
taneous pitches in polyphonic music [5]. AbeBer et al. [1]
proposed a score-informed approach to first estimate the
pitch contour of the solo instrument from the audio mix-
ture and then perform vibrato detection and analysis on the
pitch contour through autocorrelation. The performance of
this approach, however, depends heavily on the pitch esti-
mation performance. Spectrogram-based approaches such
as harmonic partial tracking [12] and template convolu-
tion [6] reduce the dependency on pitch estimation. How-
ever, these operations are still error-prone when harmonics
of different sources overlap. To our best knowledge, there
is no existing approach for vibrato detection and analysis
of multiple simultaneous sources of a polyphonic music
mixture, such as a string ensemble. Existing polyphonic
audio analysis techniques are not yet sufficient.

Figure 1 shows the limitation of audio-based analy-
sis and motivates the video-based analysis proposed in
this paper. In Figure 1 (a), the ground-truth pitch con-
tour of a cello vibrato note in a violin-cello duet perfor-
mance is shown. This pitch contour is estimated using
a monophonic pitch detection algorithm [17] on the iso-
lated (ground truth) signal of the cello note prior to mix-
ing. Vibrato characteristics are clearly observable in this
pitch contour. Figure 1 (b) shows the estimated pitch
contour of this cello note obtained from a state-of-the-art
score-informed source separation and pitch estimation al-
gorithm [7]. Due to the interference from the violin, the es-
timated pitch contour is corrupted and the vibrato patterns
are obscured, especially toward the later time instants rep-
resented on the right side of the plot. Note that this exam-
ple is just a duet of instruments with distinct pitch ranges.
For music with higher polyphony using instruments with
similar pitch ranges, the estimated pitch contours are fur-
ther corrupted, making audio-based vibrato detection and
analysis unsatisfactory.

For some instruments such as strings, vibrato is often
visible from the left hand motion, and this visual infor-
mation does not degrade as audio information does when
polyphony increases. This motivates our proposed ap-
proach of vibrato detection and analysis through video-
based analysis of the fine motion of the left hand. Figure
1 (c) shows the left hand rolling motion along the prin-
cipal motion direction (i.e., the fingerboard) of the cello
player playing the note. We can see that this motion curve
is smooth and it aligns with the ground-truth pitch contour
in Figure 1 (a) very well.

The overview of our proposed approach is illustrated in
Figure 2. This approach integrates audio, visual and score
information, and assumes that the players in the video are
well associated with score tracks. Our previous work has
addressed the association problem accurately [14]. For
each string player, we track the left hand, and then esti-
mate optical flow motion vectors at the pixel level around
the left hand. We use audio-score alignment to identify the
onset and offset of each note, and perform vibrato detec-
tion and analysis on each note from the motion vectors. We
develop two approaches for vibrato detection. One uses
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Figure 2. System overview of the proposed video-based
vibrato detection and analysis framework.

a Support Vector Machine (SVM) to classify motion fea-
tures extracted from the pixel-level motion vectors, and the
other is based on autocorrelation analysis of the left hand
motion along the principal direction (i.e., fingerboard). We
further propose a framework to analyze vibrato character-
istics: rate and extent. The vibrato rate is estimated from
the period of the hand motion curve, and the vibrato extent
is estimated from the amplitude of the motion curve after it
is scaled to match the estimated noisy pitch contour from
score-informed audio analysis.

Experiments are carried on 19 pieces of polyphonic
string music from an audio-visual music performance
dataset, and the proposed video-based approach is com-
pared with two audio-based baseline methods for vibrato
detection. Results show a significant improvement for
video-based vibrato detection over the audio-based meth-
ods. Further analysis reveals that video-based vibrato de-
tection is robust irrespective of polyphony and instrument
types. We further show that the video-based approach is
able to estimate the vibrato rate and extent with a deviation
from the ground-truth smaller than 1 Hz and 10 musical
cents for 90% of the notes, respectively.

2. AUDIO-BASED METHOD

In this section, we introduce an audio-based framework
to detect vibrato in polyphonic music to serve as a base-
line method. Vibrato can be detected from the pitch con-
tour of each source using either autocorrelation or Fourier
transform. However, estimating the pitch contour of each
source from the audio mixture is challenging. Inspired
by [1], score information can be utilized to alleviate the
difficulty of pitch estimation and its assignment to sources.

2.1 Score-informed Pitch Estimation

To utilize the score information for pitch estimation of
each source, robust audio-score alignment is required to
guarantee the temporal synchronization between the score
events and audio articulations. We apply the Dynamic
Time Warping (DTW) framework with chroma feature to
represent audio and score, as described in [14]. Then the
audio mixture is separated using harmonic masking as de-
scribed in [7]: Pitches of each source are first estimated
within two semitones around the quantized score-notated
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Figure 3. Audio-based vibrato detection. Detected vibrato
notes are marked with green rectangles in the pitch trajec-
tories estimated by score-informed pitch estimation.

pitches; Sound sources are then separated by harmonic
masking of the pitches in each frame, where the soft masks
take into account the harmonic indexes when distributing
the mixture signal’s energy to overlapping harmonics.

We then re-estimate the pitch contour of each source
from its separated signal for vibrato analysis. We again ap-
ply the above-mentioned score-informed pitch refinement
step to further reduce interference from other sources. The
output pitch contour is segmented into notes using the on-
set/offset information provided by the aligned score. Note
that although we can refine the pitches directly from the au-
dio mixture without source separation, it is reported in [16]
that the result is more robust on the separated sources. Be-
sides, the availability of separated audio sources is advan-
tageous for other vibrato detection methods that do not rely
on pitch contours.

2.2 Vibrato Detection from the Pitch Contour

After obtaining the pitch contour, vibrato detection can be
achieved by analyzing the periodic pattern for each note.
The pitch contour is analyzed in the MIDI scale, and its DC
component is removed by subtracting the average value
over the contour. Then we implement two methods to de-
tect the fluctuation rate of the pitch contour: autocorrela-
tion [1] and spectral analysis [25]. For the autocorrelation
method, prominent peaks are detected from the autocorre-
lation function, and the median value of all the neighboring
peak distance is used to calculate the fluctuation rate. If the
rate is within the range of 3-9 Hz (considering a typical vi-
brato rate range of [4, 7.5] Hz for strings [10]), the note is
detected as vibrato. For the spectral analysis method, we
first calculate the magnitude spectrum of the pitch contour
of a note through Fourier transform. We then check if the
frequency of the maximum peak lies in the rang of 3-9 Hz.
Quadratic interpolation is applied in both methods to get a
more precise peak location estimation.

The audio-based methods are simple, yet sufficient to
detect vibrato in the score-informed fashion. Figure 3 re-
views this process and illustrated the detected vibrato notes
in green boxes. This approach achieves high detection ac-
curacy in low polyphony settings, but the performance de-
grades rapidly with increasing polyphony.

3. PROPOSED METHOD

Motivated by the fact that the motion features from the
video are correlated with the pitch fluctuations, we propose
a video-based vibrato detection and analysis framework.
A string instrument player exhibits three kinds of motions:
bowing motion to articulate notes, fingering motion to con-
trol pitches, and the whole body motion to express musical
intentions. Fine periodic fingering motion on the left hand
along the fingerboard which changes the length and tension
of the string results in vibrato articulations. In this section,
we will present the method to extract this fine motion for
vibrato detection and analysis.

3.1 Motion Capture

Figure 4. Motion capture results from left hand tracking
(left), color encoded pixel velocities (middle), and scatter
plot of frame-wise refined motion velocities (right).

The first step is to detect and track the left hand for
each player, where the vibrato motions come from. The
hand tracking is based on the Kanade-Lucas-Tomasi (KLT)
tracker [24] and implemented using the same parameters
as presented in [16]. The KLT tracker results in a dy-
namic region of tracked hand location where we apply the
optical flow estimation [22] to obtain the raw motion ve-
locities for each pixel in = and y directions within that
region. The motion velocities are spatially averaged as
u(t) = [ug(t),uy(t)], where u, and u, represents the
mean motion velocities in z and y directions respectively,
and ¢ is the time index. Notice that the motion velocities in
the hand region contain not only the player’s fine motion
corresponding to vibrato playing, but also his/her large-
scale body motions during the performance. In order to
eliminate the body movement and obtain a refined motion
velocities for vibrato observation, we subtract a moving
average of the signal u(t) from itself, to obtain

v(t) = u(t) —u(t), (M

where (t) is the moving average of u(t) over a 10 frame
window. Figure 4 illustrates the original video frame with
the tracked hand position, the raw motion velocities from
optical flow estimation, and the refined motion velocities
v(t) across all the frames.

3.2 Vibrato Detection from Motion Features

The proposed vibrato detection methods are score in-
formed, where the note onset/offset information from the
score is utilized to temporally segment the refined mean
motion velocities into v¥(t), where i is the note index.



To achieve this, each score track needs to be temporally
aligned with the video frames, and spatially associated
with the players. The first issue is resolved using audio-
score alignment, assuming video and audio frames are nat-
urally synchronized. The second issue is addressed as
in [14], where player locations are segmented and asso-
ciated with the score tracks by correlating the bow mo-
tions with note events. By utilizing the mean motion ve-
locities and the extracted features, we introduce two meth-
ods for vibrato detection. The first method is based on a
SVM framework, where each v*(t) is classified as vibrato
or non-vibrato. The second method is analogous to the
audio-based technique, where we perform auto-correlation
on the extracted 1-D motion curve along the fingerboard
after principal component analysis.

3.2.1 SVM

We train a Support Vector Machine (SVM) as a classifi-
cation framework for vibrato/non-vibrato detection. We
utilize the refined motion velocity segments vi(t) =
[vE(t), v}, (t)] obtained from the procedure explained in
Section 3.1. From each v*(t), we have velocity compo-
nents in z and y directions from which 8 dimensional fea-
tures are extracted. The features are

(a) Zero crossing rate (4-D): Vibrato has inherent peri-
odicity when compared to non-vibrato regions. Hence we
utilize the zero crossing rate, which is the ratio of total zero
crossings to total frame length for v’ (t), v} (t) and their
auto-correlations, respectively.

(b) Frequency (2-D): Vibrato has a typical frequency in
the range of 3-9 Hz. Hence we calculate the sum of the ab-
solute value of Fourier coefficients in the 3-9 Hz frequency
range for v}, (t) and v, (t).

(c) Auto-correlation peaks (2-D): Auto-correlation of
v%(t) and v}, (t) is calculated within a fixed lag of 10 video
frames, where total number of local maximum values is
utilized as one of the features.

The SVM is trained on tracks which are distinct from
the test set using the leave-one-out training strategy. The
ground truth vibrato/non-vibrato labels are obtained from
ground-truth audio tracks and associated with the corre-
sponding player. For the SVM training algorithm we set
the kernel function and scale parameters as radial basis
function and automatic scaling, respectively.

3.2.2 PCA

We also propose an unsupervised framework for vibrato
detection. From Figure 4, we find that the distribution
of the refined motion velocities for vibrato motions are
along the fingerboard. So we perform Principal Compo-
nent Analysis (PCA) on v(t) across all frames to identify
this principal motion direction, and project the motion ve-
locity vectors to this principal direction to obtain a 1-D
motion velocity curve V (t) as

V(t) = == @

where Vv is the eigenvector corresponding to the largest
eigenvalue of the PCA of v(t). We then perform an inte-

gration of the motion velocity curve over time to calculate
a motion displacement curve as

X(t) = /0 V(r)dr. 3)

This displacement curve corresponds to the fluctuation of
the vibrating length of the string and hence the pitch fluctu-
ation of the note. Figure 1 (c) shows the motion displace-
ment curve for one vibrato note, which is matched with
the ground-truth pitch contour. Similar to the audio-based
approach, vibrato is detected through peak picking on the
autocorrelation function of the motion displacement curve.
Note that different thresholds on the peak picking will af-
fect the sensitivity of the vibrato detection, and we use the
uniform threshold for all the notes which yields the best
overall results.

3.3 Vibrato Analysis

The video-based method also enables new techniques for
analyzing the vibrato features, i.e., vibrato rate and vibrato
extent, which describe the speed and the amount by which
the pitch is varied. Here extent is defined as the dynamic
range of the pitch contour, i.e., the peak-trough difference.
Vibrato rate can be directly extracted from video by ob-
serving how fast the left hand is rolling along the finger-
board. Again this is solved by analyzing the autocorrela-
tion on the motion displacement curve X (¢). Quadratic
interpolation is required for peak picking due to the low
frame rate of videos. Vibrato extent, however, cannot be
estimated by capturing the motion extent, which varies
upon different camera distance and angles. Besides, to
generate the same vibrato extent, the extent of motion also
depends on the vibrato articulation style, the hand position
on the fingerboard, and the instrument type. Therefore, we
combine the audio analysis together with the extracted mo-
tion displacement curve for vibrato extent estimation.

We first estimate the vibration extent of the motion dis-
placement curve as w, by calculating the median of the
distance between all the peaks and troughs within each
note. We then scale the displacement curve to fit the pitch
contour, and the vibrato extent can be calculated from the
scaling factor. Specifically, assuming F'(¢) is the estimated
pitch contour (in MIDI number) of the detected vibrato
note from audio analysis after subtracting the DC compo-
nent of itself, the vibrato extent v, (in musical cents) is
estimated as 7, as:

o

U = arg min E
Ve

T t=ton

X(t)?

(&

100 - F(t) — v, 4)

where 100 - F'(t) is the pitch contour measured in musi-

cal cents; X()

o is the normalized hand displacement curve.
Since X (t) is calculated from the video modality, temporal
interpolation is applied beforehand to guarantee the same
frame rate as the audio, i.e., the hop size for Short-Time
Fourier Transform. Note that temporal shift may be ap-
plied to X (¢) to maximize the cross correlation between
X(t) and F(t) to compensate the slight asynchrony be-

tween the two modalities (usually within 20ms).




4. EXPERIMENTS

4.1 Dataset and Evaluation Measures

The vibrato detection and analysis system is tested on the
URMP dataset [15]. The dataset contains individually
recorded audio-visual tracks of various instruments, which
are synchronized and assembled to form 44 classical en-
semble pieces ranging from duets to quintets. Ground-
truth audio tracks and pitch/note annotations are provided
in the dataset. The ground-truth annotation of the vibrato
rate/extent is acquired by the autocorrelation method as
described in Section 2.2 on ground-truth individual audio
tracks, and the presence of vibrato is manually examined.
For our experiments, we use the 19 ensemble pieces that
contains at most one non-string instrument, including 5
duets, 4 trios, 7 quartets, and 3 quintets. Audio is sam-
pled at 48 KHz, and processed with a frame length of 42.7
ms and a hop size of 10 ms for the STFT. Video resolution
is 1080P, and the frame rate is 29.97 frames per second.

In the experiments, we evaluate the two proposed video-
based methods, i.e., the classification method using SVM
framework (Vid-SVM) and autocorrelation analysis on the
principal motion component (Vid-PCA). Two audio-based
methods described in Section 2.2 are also compared as
baseline methods, i.e., peak-picking of the autocorrela-
tion (Aud-AC), and Fourier transform of the pitch contour
(Aud-FT). Since the vibrato detection can be viewed as a
retrieval task, we compute the note-level precision (P), re-
call (R), and F-measure (F) using the number of true posi-
tives, false positives and false negatives on each track. For
the two audio-based methods and the Vid-PCA method, we
adjust the peak-picking threshold for a balanced value of
precision and recall and fix it for all the tracks. For vibrato
rate and extent estimation, we calculate the error between
the estimated and ground-truth values on the true positive
detections from the Vid-PCA method.

4.2 Results

4.2.1 Overall Evaluation on Vibrato Detection

We first evaluate the vibrato detection results using preci-
sion, recall and F-measure for the four methods on all of
the 57 tracks from the 19 pieces excluding non-string in-
strument ones, as plotted in Figure 5. Each bar is the aver-
age of the 57 tracks. We find that in polyphonic music,
both audio-based methods achieve limited performance;
lower than 75% for the F-measure. Video-based meth-
ods can get a pronounced improvement on the F-measure,
which is as high as 90%. The supervised classification
method based on SVM further outperforms the unsuper-
vised method, because of the richer features.

4.2.2 Vibrato Detection Evaluation on Different Cases

We further investigate how the vibrato detection per-
formance changes along with polyphony and instrument
types. Figure 6 illustrates the scatter plot of the vibrato
detection F-measure for the four methods (with different
colors) in four different polyphony levels corresponding
to duets, trios, quartets, and quintets. Each sample point
represents the evaluation on one track, and the average
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Figure 5. Overall vibrato detection results showing the
precision, recall, and F-measure (shown on top) accuracies
for 2 audio-based methods and 2 video-based methods.

value in each subset is marked as the red line. We see that
the two audio-based methods can reach performance com-
parable with the video-based methods in low-polyphony
pieces, but their performance drops when polyphony in-
creases. This is because of the decreased quality of the
pitch contour that is extracted from high-polyphony audio.
However, polyphony does not affect the vibrato detection
performance for the two video-based methods, since the
left hands are always directly observable from visual scene
in this dataset. Note that there are several extremely low
F-measure values for video-based methods. These come
from tracks with plucking-vibrato articulations, where the
vibrato is captured from hand motion but is not annotated
in the ground truth as its duration and extent are different
from the bowing-vibrato articulations.
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Figure 6. Vibrato detection performance decreases as
polyphony increases for audio-based methods, while it
stays the same for video-based methods.

Figure 7 further reveals how the vibrato detection re-
sults vary for different instruments: violin, viola, cello,
and double bass. Again, the audio-based methods are sen-
sitive to instrument types while video-based methods are
not. The reason is that the separated track of the low-
pitch instrument (such as double bass) is likely to get con-
taminated by other higher-pitch voices using the harmonic
mask method for source separation. In contrast, the vibrato
motions for the four different instruments have similar pat-
terns, thus easy to capture by our proposed methods.

4.2.3 Evaluation of Vibrato Characteristics

Due to the unsatisfactory performance of audio-based vi-
brato detection, we evaluate the accuracy of vibrato rate
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Figure 7. Vibrato detection performance decreases when
the fundamental frequency decreases for audio-based
methods, while it stays the same for video-based methods.
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Figure 8. Distribution of vibrato rate and extent estimation
error on all notes of all tracks.

and extent estimation only based on the video modality.
We conduct this analysis on the true positive detections
from the Vid-PCA method, totaling 2290 vibrato notes
from the 57 tracks. We calculate the absolute deviation
of the estimated value from the ground-truth value for all
the notes, and get an average vibrato rate estimation er-
ror of 0.38 Hz and median of 0.23 Hz. For vibrato extent,
we have an average estimation error of 3.47 cents and a
median of 2.29 cents. Figure 8 plots the vibrato rate and
extent error distribution for all the notes. We find that for
90% of the vibrato notes, the proposed approach estimates
the vibrato rate and extent within an error of 1 Hz and 10
cents, respectively.
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Figure 9. Distributions of vibrato rate and extent for dif-
ferent instruments.

In order to further demonstrate the potential applica-
tions of our approach in musicology studies, we analyze
how the vibrato rate and extent vary on different instru-
ments and players in this dataset. Figure 9 plots the distri-

Figure 10. Distributions of vibrato rate and extent of four
different violin players.

butions of rate and extent for the four string instruments,
where each sample point represents one track. Similar vi-
brato rate and extent can be observed for violin and vi-
ola whereas, in contrast, we observe a significant drop for
the double bass, where a slower rate and subtler extent
is inferred. This was explained in [18]; to produce audi-
ble pitch fluctuations on the thicker and longer strings on
double bass requires more effort to overcome the strength,
flexibility, and coordination than other string instruments.
Thus vibrato rates of double bass players (4-5 Hz [20]) are
typically slower than other string instrumentalists.

We also analyze the vibrato patterns of the four different
violinists among the 31 violin tracks, as plotted in Figure
10. Vibrato rate is more dispersed among players than vi-
brato extent, and both rate and extent show a similar trend
among the players. For example, the second player ex-
hibits a slower vibrato rate with a subtler vibrato extent,
while the forth player exhibits a faster vibrato rate with a
pronounced vibrato extent. This may be because of differ-
ent players’ articulation styles, or different characteristics
of the pieces. Detailed discussion is not included in this pa-
per, but our proposed system can provide a powerful tool
for further analyses on the musicology side.

S. CONCLUSION

We proposed a video-based vibrato detection and analy-
sis framework for polyphonic string music. Specifically,
we developed two methods that utilize the motion features
from the video for vibrato detection based on the observed
correlation between the motion vibrations and the vibrato
pitch fluctuations. We also extended the framework to
estimate the vibrato rate and extent. Experiments show
that the proposed method is successful and offers much
better performance than audio-based methods, particularly
on pieces with high polyphony, where the strong interfer-
ence between sources severely degrades the performance
of audio-based methods. In future work, it would be help-
ful to develop a non-score-informed framework for vibrato
detection and analysis.
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