
SCORE FOLLOWING FOR PIANO PERFORMANCES WITH
SUSTAIN-PEDAL EFFECTS

Bochen Li Zhiyao Duan
Audio Information Research (AIR) Lab,

University of Rochester, Department of Electrical and Computer Engineering
bli23@ur.rochester.edu, zhiyao.duan@rochester.edu

ABSTRACT

One challenge in score following (i.e., mapping audio frames
to score positions in real time) for piano performances is
the mismatch between audio and score caused by the us-
age of the sustain pedal. When the pedal is pressed, notes
played will continue to sound until the string vibration nat-
urally ceases. This makes the notes longer than their no-
tated lengths and overlap with later notes. In this paper,
we propose an approach to address this problem. Given
that the most competitive wrong score positions for each
audio frame are the ones before the correct position due to
the sustained sounds, we remove partials of sustained notes
and only retain partials of “new notes” in the audio repre-
sentation. This operation reduces sustain-pedal effects by
weakening the match between the audio frame and previ-
ous wrong score positions, hence encourages the system to
align to the correct score position. We implement this idea
based on a state-of-the-art score following framework. Ex-
periments on synthetic and real piano performances from
the MAPS dataset show significant improvements on both
alignment accuracy and robustness.

1. INTRODUCTION

1.1 Audio-Score Alignment

Audio-score alignment is the problem of aligning (syn-
chronizing) a music audio performance with its score [8].
It can be addressed either offline or online. Offline algo-
rithms may “look into the future” when aligning the current
audio frame to the score. Online algorithms (also called
score following), on the other hand, may only use the past
and current audio data to align the current audio frame to
the score. Provided with enough computational resources,
online algorithms can be applied in real-time scenarios.
As online algorithms utilize less input data than offline al-
gorithms, they can support broader applications including
those in offline scenarios. However, they are also more
challenging to achieve the same alignment accuracy and
robustness as offline algorithms do.
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Audio-score alignment has many existing and poten-
tial applications. Offline algorithms have been used for
audio indexing to synchronize multiple modalities (video,
audio, score, etc.) of music to build a digital library [28].
Other applications include a piano pedagogical system [3]
and an intelligent audio content editor [11]. Online algo-
rithms further support online or even real-time applica-
tions, including automatic accompaniment of a soloist’s
performance [8], automatic coordination of audio-visual
equipment [18], real-time score-informed source separa-
tion and remixing [11], and automatic page turning for mu-
sicians [1]. Potential applications of audio-score alignment
include musicological comparison of different versions of
musical performances, automatic lyrics display, and stage
light/camera management.

1.2 Related Work

In this section, we briefly review existing approaches to
audio-score alignment with an emphasis on score follow-
ing for piano performances, which is the problem addressed
in this paper.

Audio-score alignment has been an active research topic
for two decades. Early researchers started with monophonic
audio performances. Puckette [25], Grubb and Dannen-
berg [16], and Cano et al. [4] proposed systems to follow
vocal performances. Orio and Dechelle [23] used a Hid-
den Markov Model (HMM)-based method to follow dif-
ferent monophonic instruments and voices. Raphael [26]
applied a Bayesian network to follow and accompany a
monophonic instrument soloist.

For polyphonic audio, a number of offline systems using
Dynamic Time Warping (DTW) have been proposed for
different kinds of instruments, including string and wind
ensembles [24] and pop songs [17]. For online algorithms,
Duan and Pardo [12] proposed a 2-dimensional state space
model to follow an ensemble of string and wind instru-
ments. All the abovementioned methods, however, have
not been tested on piano performances.

There are a few systems that are capable of aligning pi-
ano performances. Joder and Schuller [20] proposed an
HMM system with an adaptive-template-based observa-
tion model to follow piano performances. In [19], Joder
et al. further improved the system by exploring different
feature functions for the observation model and using a
Conditional Random Field (CRF) as the alignment frame-
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work. Wang et al. [29] employed DTW to achieve align-
ment in three passes of the audio performance and used
score-driven NMF to refine the audio and score representa-
tions in later passes. All the abovementioned systems have
been systematically evaluated and shown with good perfor-
mance on about 50 classical piano performances from the
MAPS dataset [14], however, they are offline algorithms
and require the entire audio piece to find the alignment.
Dixo and Widmer [10] developed a toolkit to align differ-
ent versions of music audio performances including piano
based on an efficient DTW algorithm. However, this is
again an offline algorithm, although an extension to online
scenarios can be made through online DTW algorithms [9].

For online algorithms capable of following piano per-
formances, Cont [5] proposed a hierarchical HMM approach
with Nonnegative Matrix Factorization (NMF). However,
this system was not quantitatively evaluated. Later, Cont
[6] proposed another probabilistic inference framework with
two coupled audio and tempo agents to follow general poly-
phonic performances. This algorithm has been systemati-
cally evaluated on 11 monophonic and lightly polyphonic
pieces played by wind and string instruments, but just 1
polyphonic piano performance (a Fugue by J.S. Bach).

1.3 Our Contribution

In this paper, we are interested in following piano perfor-
mances. Their specific properties, such as sustain pedal
effects, the sympathetic vibration of strings, and the wide
pitch range, may impose challenges to systems that are de-
signed to follow ensembles of voices, strings, and wind in-
struments. In particular, we argue that the sustain-pedal ef-
fects are especially challenging. When the pedal is pressed,
notes played will continue to sound until the string vibra-
tion naturally ceases. This makes the notes longer than
their notated lengths and overlap with later notes, which
causes potential mismatch between audio and score.

Note that Niedermayer et al. reported negligible influ-
ence of sustain-pedal effects on alignment results in their
experimental study on audio-score alignment [22]. How-
ever, they further reasoned that this might be because the
dataset used for evaluation contains only Mozart pieces, in
which “the usage of pedals plays a relatively minor role”.
In fact, the sustain pedal has been commonly used since
the Romantic era (after Mozart) in the Western music his-
tory, and is widely used in modern piano performances of
many different styles. Another reason for Niedermayer et
al.’s observation, we argue, is that the algorithm used for
evaluation was an offline algorithm, which is more robust
to the local mismatch between audio and score as a global
alignment is employed. For online algorithms, however,
they are more sensitive to local audio-score mismatch and
they can be totally lost during the following process.

In this paper, we build a system to follow piano per-
formances, based on the state-space framework proposed
by Duan and Pardo [12]. More specifically, we propose
an approach to deal with the mismatch issue caused by
sustain-pedal effects. In each inter-onset segment of the
audio, we remove partials of all notes extended from the

previous segment and only retain partials of the new notes.
This operation reduces sustain-pedal effects by weakening
the match between an audio frame and the previous wrong
score positions, which are the most competitive wrong can-
didates. But we need to mention another case that the
match between this audio frame and the current correct
score position may be also reduced, if notes in previous
frames are actually extended because they are not released
yet according to the score instead of due to the sustain
pedal. Nevertheless, as explained in detail in Section 3.4,
this operation still favors the correct position even in this
case. We conduct experiments on 25 synthetic and 25 real
piano performances randomly chosen from the MAPS dataset
[14]. Results show that the proposed system significantly
outperforms the baseline system [12] on both alignment
accuracy and robustness.

2. SYSTEM FRAMEWORK

We build our system based on the state-space model pro-
posed in [12], which follows polyphonic audio with its
score. Music audio is segmented into time frames and fed
into the system in sequence. Each frame yn is associated
with a 2-dimensional state vector sn = (xn, vn)T , repre-
senting its underlying score position (in beats) and tempo
(in beats-per-minute), respectively. The goal of score fol-
lowing is to infer the score position xn from current and
previous audio observations y1, · · · ,yn. This is formu-
lated as an online inference problem of hidden states of a
hidden Markov process, which is achieved through particle
filtering. The hidden Markov process contains two parts: a
process model and an observation model.

The process model describes state transition probabili-
ties p(sn | sn�1) by two dynamic equations for xn and vn,
respectively. The score position advances from the previ-
ous position according to the tempo. The tempo changes
through a random walk or does not change at all, depend-
ing on where the position is.

The observation model p(yn | sn) evaluates the match
between an audio frame and the hypothesized state on the
pitch content. A good match is achieved when the audio
frame contains exactly the pitches described on the score
at the hypothesized score position in the state. Otherwise, a
bad match is achieved. This is calculated using the multi-
pitch likelihood model proposed in [13], which evaluates
the likelihood of a hypothesized pitch set in explaining the
magnitude spectrum of an audio frame.

The multi-pitch likelihood model detects prominent peaks
in the magnitude spectrum of the audio frame and repre-
sents them as frequency-amplitude pairs:

P = {hfi, aii}K
i=1, (1)

where K is the total number of peaks detected in the frame.
The likelihood would be high if the harmonics of the hy-
pothesized pitch set match well with the detected peaks
in terms of both frequency and amplitude. The likelihood
would be low otherwise, for example, if many harmonics
are far away from any detected peak.
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3. PROPOSED METHOD

3.1 Properties of Piano Music

There are many specific properties of piano music, such as
the wide pitch range and the inharmonicity of note partials.
In this section, we discuss two properties considered in the
proposed approach: strong onset with exponential decay of
the note waveform, and the sustain-pedal effects.

Figure 1. Waveform and energy envelope of a piano note.

Figure 1 shows the waveform and energy envelope of
a piano note. We see a sudden energy increase at the on-
set followed by an exponential decay. When a piano key
is pressed, its damper is released and its hammer strikes
the strings, which yields an impulse-like articulation. The
damper continues to be released as the key is being pressed.
This lets the string vibration decay naturally, which may
take as long as 10 seconds. The damper comes back to
the strings when the key is released, and the string vibra-
tion ceases quickly. However, when the sustain pedal is
pressed, all dampers of all keys are released no matter if a
key is pressed or not. This allows all active notes to con-
tinue to sound, and even activate some inactive notes due to
sympathetic vibrations, which enriches the sound timbre.

Figure 2. Mismatch between audio and score caused by
the sustain-pedal effects.

A detailed analysis of the sustain-pedal effects is given
by Lehtonen et al. in [21]. Here we focus on its resulted
mismatch problem between audio and score. Figure 2 shows
the MIDI score (in pianoroll) and waveforms of four notes.
According to the score, the first two notes are supposed to
end when the latter ones start. However, due to the sustain
pedal, the waveforms of the first two notes are extended

into those of the latter. This causes potential mismatch be-
tween the audio and the score, especially in frames right
after the onset of the latter notes. In other words, the audio
is unfaithful to the score in those frames. The degree and
the length of the unfaithfulness, however, is not notated in
the score. It depends on the the notes being played as well
as how hard the performer presses the pedal. If the pedal
is pressed partially, then the damper will slightly touch the
strings and the effects are slighter. While some composers
and music editors use pedal marks to notate it, appropriate
use of the sustain pedal is more often left to the performer.

The main idea of the proposed approach to deal with
the sustain-pedal effects is to first detect audio onsets to
locate the potentially unfaithful frames. Then partials of
the extended notes are removed in the peak representation
of these frames. We describe the two steps in the following.

3.2 Onset Detection

Although not all frames right after an onset are unfaith-
ful, as notes could be extended because their keys are still
pressed according to the score, many unfaithful frames do
appear right after onsets. Therefore, onset detection helps
to locate potentially unfaithful frames. Many onset detec-
tion methods have been proposed in the literature [2]. In
this paper, we adopt the widely used spectral-based ap-
proach, since it is effective for polyphonic signals. We
adapt it to online scenarios for our score following system.

Figure 3. Illustration of onset detection. (a) Spectrogram.
(b) Spectrogram after compression. (c) Spectral flux. (d)
Normalized spectral flux by signal energy.

Figure 3 illustrates the onset detection process. We first
calculate the audio magnitude spectrogram Y(n, k) through
Short-time Fourier Transform (STFT) in Figure 3(a), where
n and k are frame and frequency bin indices, respectively.
We then apply logarithmic compression on it to enhance
the high-frequency content by

Ỹ(n, k) = log (1 + � · Y(n, k)) , (2)

where � controls the compression ratio. This is because
high frequency content is indicative for onsets but rela-
tively weak in the original spectrogram [27]. Figure 3(b)
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shows the enhanced magnitude spectrogram with � = 0.2.
We then compute the spectral flux �

Y

(n) by summing
positive temporal differences across all frequency bins as

�
Y

(n) =
X

k

�

�

�

Ỹ(n, k) � Ỹ(n � 1, k)
�

�

�

�0
, (3)

where |·|�0 denotes half-wave rectification, i.e., keeping
non-negative values while setting negative values to 0. The
calculated spectral flux is shown in Figure 3(c). We can see
that all onsets in the example are associated with a clear
peak, however, peak heights vary much. Spurious peaks
in the middle of louder notes are as high as true peaks of
softer notes. One could set an adaptive threshold which
varies with the moving average of the spectral flux, but this
would make the onset detection algorithm offline. Instead,
we normalize the spectral flux by the energy of the audio
signal in the current frame by

�̃
Y

(n) = �
Y

(n)/E(n), (4)

where E(n) is the Root-Mean-Squre (RMS) value of the
n-th frame of the audio. After this operation, a simple
threshold can detect the onsets, as shown in Figure 3(d).

Note that onset detection has been used in several on-
line [5] and offline [15] alignment algorithms, where a spe-
cial matching function is used to match audio and score
onsets. In our system, however, onset detection is to locate
potentially unfaithful audio frames. Their audio represen-
tations are modified but no special matching function is
defined.

3.3 Reduce Pedal Effects by Spectral Peak Removal

Frames within a period after a detected onset are poten-
tially unfaithful frames due to the sustain pedal. Conser-
vatively, without knowledge of the degree and length of
the effects, we just reduce them in the first 200ms (i.e.,
20 frames) following an onset. As described in Section 2,
each audio frame is represented by a set of significant spec-
tral peaks in Eq. (1). The match between the audio frame
and a hypothesized score location is evaluated through the
multi-pitch likelihood model on how well the harmonics of
the score notes match with spectral peaks in the audio. As
the spectrum of an unfaithful audio frame contains unex-
pected peaks corresponding to partials of notes extended
by the sustain pedal, we propose to remove these peaks to
reduce the mismatch between audio and score.

Figure 4 illustrates the idea. For each potentially un-
faithful frame (e.g., the n-th frame), we compare its spec-
tral peaks with those in a frame before the onset (e.g.,
the m-th frame), and remove peaks that seem to be ex-
tended from the earlier frame. Let Pm = {hfm

i , am
i i}Km

i=1
be the total Km peaks detected in the m-th frame, and
Pn =

�⌦

fn
j , an

j

↵ Kn

j=1
be the total Kn peaks detected in the

n-th frame. A peak in the n-th frame whose frequency is
very close to and whose amplitude is smaller than those of
a peak in the m-th frame is considered as an extension and
is removed. Note that repeated notes will not be removed
in this way as the amplitude criterion is not met. Extended

Figure 4. Illustration of the spectral peak removal idea. (a)
Audio performance representation before and after peak
removal. (b) Magnitude spectra with spectral peaks in the
m-th and n-th frames. Peaks marked by crosses corre-
spond to the first two notes. Peaks marked by circles cor-
respond to the latter two notes.

partials that are overlapped with a partial of a new note
will not be removed either due to the same reason. Af-
ter peak removal, a new spectral peak representation of the
n-th frame is obtained as

P⇤
n = Pn��hfn

i , an
i i : 9j s.t. |fn

i � fm
j | < d, an

i < am
j

 

,
(5)

where hfn
i , an

i i 2 Pm. d is the threshold for the allowable
frequency deviation, which is set to a quarter tone in this
paper. Finally, the match between the n-th frame and a hy-
pothesized score position is evaluated through the multi-
pitch likelihood of score-indicated pitches in explaining
the modified peak representation of the spectrum. Note
that this operation only modifies the peak representation of
the audio instead of the audio itself.

The peak removal operation emphasizes new notes in
the representation and discards old ones. This is in accor-
dance to music perception, as we always pay more atten-
tion to new notes even though the old notes are as loud.

3.4 New Mismatch Introduced by Peak Removal

The peak removal operation removes notes extended by the
sustain pedal in the audio representation, however, it also
removes notes that should remain according to the score,
e.g, D4 in Figure 5(a). This causes new mismatch between
audio and score. Ideally, we could differentiate these two
kinds of notes from the note offset information in a well-
aligned score, which we do not have during score follow-
ing. Nevertheless, we explain in the following that the new
mismatch actually still helps with score following.
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Figure 5. Illustration of mismatch reduced and introduced
by the peak removal operation. (a) MIDI score and its
piano-roll representation. (b) Audio performance repre-
sentation before peak removal. (c) Audio performance rep-
resentation after peak removal.

Figure 5 illustrates the mismatch reduced and introduced
by the peak removal operation. A MIDI score with two
inter-onset segments ↵1 and ↵2 is shown in Figure 5(a).
Notes 1 and 2 are supposed to end when Notes 4 and 5
start, while Note 3 is supposed to span both segments. For
an audio frame right after the onset (e.g., the n-th frame)
in Figure 5(b), we can see that it contains all the five notes,
including Notes 1 and 2 due to the sustain pedal. It is
therefore unfaithful to the correct segment ↵2 in the score.
Which segment is a better match to this audio frame? Out
of the 5 notes in the n-th frame, ↵1 contains 3 (Notes 1,
2, and 3) and ↵2 also contains 3 (Notes 4, 5, and 3). The
correct segment ↵2 does not show a better match than ↵1.

Suppose the audio onset of Note 4 and 5 is detected,
then the peak removal operation will remove spectral peaks
corresponding to Notes 1, 2, and 3 in the n-th frame. The
mismatch between the n-th frame and the correct segment
↵2 due to the sustain pedal is reduced, while new mis-
match is introduced as Note 3 is supposed to stay in ↵2 in
the score but is removed in the audio. This leaves 2 notes
(Notes 4 and 5) shared by the score and the audio, although
the score has 1 more note (Note 3). The mismatch between
the n-th frame and ↵1, on the other hand, is increased sig-
nificantly. There becomes no intersection at all between
notes remained in the n-th frame (Notes 4 and 5) and notes
in ↵1 (Notes 1, 2, and 3). Therefore, the correct segment
↵2 is clearly a better match to the n-th frame.

In general, the peak removal operation may introduce
mismatch between an audio frame and its correct score lo-
cation as it may remove peaks that are supposed to stay,
but the mismatch between the audio frame and the previ-
ous wrong score location will be increased much more. In
fact, there will be no match at all. This is true even if all
notes in ↵1 stay in ↵2 according to the score. Therefore,
the mismatch introduced by the peak removal operation is
not harmful to but actually helps with score following.

In Figure 5, we only consider the previous segment ↵1

as a wrong segment to compete with ↵2. This is because
it is the most common error caused by the sustain pedal
in score following. The peak removal operation, however,
can help eliminate non-immediate segments that are prior
to the current segment as well.

4. EXPERIMENTS

4.1 Data Set and Evaluation Measures

We use the MAPS dataset [14] to evaluate the proposed
approach. In this dataset, performers first play on a MIDI
keyboard, then the MIDI performances are rendered into
audio by a software synthesizer or a Yamaha Disklavier.
The former are synthetic recordings while the latter are real
acoustic recordings. Both have exactly the same timing as
the MIDI performances. We randomly select 25 synthetic
pieces and 25 real pieces from the dataset. The synthetic
pieces simulate the “Bechstein D 280” piano in a con-
cert hall, and the real pieces are recorded with an upright
Disklavier piano. Approximately 18 synthetic pieces and
10 real pieces are played with substantial sustain pedal us-
age. We then download their MIDI scores from http://
piano-midi.de/. Note that the MIDI performances
have minor differences from the MIDI scores besides their
tempo difference. These include occasionally missed or
added notes, different renderings of trills, and slight desyn-
chronization of simultaneous notes. We therefore perform
an offline DTW algorithm to align the MIDI performances
to the MIDI scores and then manually correct minor errors
to obtain the ground-truth alignment.

We calculate the time deviation (in ms) between the
ground-truth alignment and the system’s output alignment
of the onset of each score note. This value ranges from 0ms
to the total length of the audio. We define its average over
all notes in a piece as the Average Time Deviation (ATD).

We also calculate the Align Rate (AR) [7] for all pieces.
It is defined as the percentage of correctly aligned notes,
those whose time deviation is less than a threshold. Com-
monly used thresholds range from 50ms to 200ms depend-
ing on the application. For an automatic accompaniment
system, a deviation less than 50ms would be required, while
for an automatic page turner, 200ms would be fine.

4.2 Implementation Details

Our score following system is built upon the system pro-
posed in [12], whose source code can be downloaded at
the authors’ website. We therefore take it as the baseline
system for comparison. We use the authors’ original code
and parameter settings in both the baseline system and the
proposed system. The multi-pitch likelihood model in [12]
was trained on thousands of randomly mixed chords using
notes of 16 kinds of Western instruments excluding piano.
We stick with this model in the proposed system for a fair
comparison. For unique parameters of the proposed sys-
tem, we set � to 0.2 in Eq. (2), the threshold in Figure 3
to 225, the length of unfaithful region to 200ms after each
detected onset, the frame to compare with to the 5-th frame
before the onset, and the peak frequency deviation d in Eq.
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(5) to a quarter tone. All these parameters are fixed for
all pieces. Due to the probabilistic nature of the baseline
system and the proposed system, we run 10 times of each
system on each piece for the comparison.

4.3 Results

(a) The 25 synthetic pieces.

(b) The 25 real pieces.

Figure 6. Align Rate comparisons between the baseline
[12] (grey) and the proposed (white) systems using differ-
ent time deviation tolerrances. Numbers above the figures
show medians of the boxes.

Figure 6 shows box plots of align rates of the two sys-
tems with different onset deviation tolerance values on both
synthetic and real pieces. Each box in Figure 6(a) repre-
sents 250 data points (10 runs on 25 pieces) and each box
in Figure 6(b) represents 250 data points. We can see that
for the synthetic pieces, the median align rate is signifi-
cantly improved for all tolerance values. The dispersion of
the distribution is also significantly shrunk, making the im-
provement on some low-performing piece-runs especially
significant. For the real pieces, the median align rate is sig-
nificantly improved for all tolerance values except 200ms.
The dispersion of the distribution is shrunk significantly
for all tolerances except 50ms. This shows that the pro-
posed approach improves the alignment accuracy and ro-
bustness significantly on both synthetic and real pieces.
The improvement on synthetic pieces is more remarkable
because there are more synthetic pieces with a substantial
pedal usage. However, the proposed system also has more
low-performing outliers on the real pieces, some of which
correspond to piece-runs when the system is lost.

Figure 7 compares the Average Time Deviation (ATD)
between the two systems on all piece-runs. Again, each
box in the synthetic setting contains 250 points and each
box in the real setting contains 250 points. We can see

Figure 7. Average time deviation comparison between the
baseline [12] and the proposed system. Outliers that ex-
ceed 500ms are not shown in this figure. Several outliers
are higher than 3 seconds. Numbers above the figure show
medians of the boxes.

that the median ATD in both cases is reduced by the pro-
posed system. The reduction on the synthetic pieces is
even more significant. The dispersion of the distribution is
also shrunk significantly, reducing the worst ATD (exclud-
ing outliers) from 200-300ms to the range under 200ms.
After the improvement, a fair amount of synthetic and real
piece-runs have ATD under 50ms, which would enable real-
time applications such as automatic accompaniment.

Examples of alignment results can be found at
http://www.ece.rochester.edu/users/
bli23/projects/pianofollowing.

5. CONCLUSIONS

In this paper we proposed an approach to follow piano per-
formances with sustain-pedal effects. The usage of the
sustain pedal extends notes even if their keys have been
released, hence causes mismatch between audio and score,
especially in frames right after note onsets. To address this
problem, we first detect audio onsets to locate these po-
tentially unfaithful frames. We then remove spectral peaks
that correspond to the extended notes in these frames. This
operation reduces the mismatch caused by the sustain-
pedal effects at the expense of introducing potential new
mismatch caused by the removal of notes whose keys have
not been released. However, we analyzed that this opera-
tion still helps the system to favor the correct score position
even in this case. Experimental results on both synthetic
and real piano recordings show that the proposed approach
improved the alignment accuracy and robustness signifi-
cantly over the baseline system.

For future work, we plan to consider other specific prop-
erties of piano music to improve the alignment perfor-
mance. For example, alignment of audio and score onsets
can provide “anchors” for the alignment, and we can define
a special matching function that models the transient-like
property to align onsets. In addition, for the sustain part,
a time-varying matching function that considers the expo-
nential energy decay would improve the alignment accu-
racy within a note.
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