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ABSTRACT 

 
Online beat tracking (OBT) has always been a challenging task. Due 

to the inaccessibility of future data and the need to make inference 

in real-time. We propose Don’t Look back! (DLB), a novel approach 

optimized for efficiency when performing OBT. DLB feeds the 

activations of a unidirectional RNN into an enhanced Monte-Carlo 

localization model to infer beat positions. Most preexisting OBT 

methods either apply some offline approaches to a moving window 

containing past data to make predictions about future beat positions 

or must be primed with past data at startup to initialize. Meanwhile, 

our proposed method only uses activation of the current time frame 

to infer beat positions. As such, without waiting at the beginning to 

receive a chunk, it provides an immediate beat tracking response, 

which is critical for many OBT applications. DLB significantly 

improves beat tracking accuracy over state-of-the-art OBT methods, 

yielding a similar performance to offline methods. 

 

Index Terms— Online beat tracking, particle filtering, Monte 

Carlo localization, causal inference, music beat detection 

1. INTRODUCTION 

Beat tracking is an important task in Music Information Retrieval 

(MIR) and is the core block of music rhythm analysis. It also has a 

vast range of usages for other MIR tasks (e.g., music transcription, 

music metadata generation, genre classification, music emotion 

recognition, and event analysis). Online beat tracking (OBT) refers 

to beat tracking in real time or a causal fashion. It enables further 

applications such as automatic music accompaniment, interactive 

music processing, and auto DJs.  

In general, every music beat tracker has two main blocks. One is 

extracting some music features that are informative for the task and 

the second one is to infer beat positions based on the extracted 

features. For the first block, many approaches [1-2] extract an onset 

strength signal (OSS) such as signal’s spectral flux as the main 

feature for beat detection. Other methods [3-4-5] take advantage of 

deep neural network to directly obtain a beat activation function. 

With the OSS or beat activation function, in the second block, 

different techniques such as autocorrelation function (ACF) and 

peak picking [4], resonating comb filter (CF) [24], dynamic  
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programming [8] or more advanced probabilistic models such as 

hidden Markov models and dynamic Bayesian networks (DBN) 

[25], Kalman filter [15], and particle filtering (PF) [17-18] are used 

to infer beat locations.  

Compared to offline approaches, OBT faces unique challenges 

including partial data access, processing speed constraints, and the 

inability to correct previous detections. One category of existing 

OBT methods use a moving window to model signal regularity over 

the recent past signal to make beat predictions [7-8-9-10-11-13-14]. 

In particular, OBTAIN [6] uses cumulative OSS and autocorrelation 

response to locate beats. However, the cumulative OSS relies 

heavily on past data and cannot track tempo changes or fluctuations 

properly. Aubio [13-14] locates beat positions based on the 

weighted autocorrelation response in a context-dependent model of 

OSS.   Böck and Schedl [7] used beat activations from a recurrent 

neural network (RNN) with a bidirectional long short-term memory 

(BLSTM) structure in a moving window to estimate local tempo and 

infer beats based on auto correlation function. Gkiokas and 

Katsouros [8] utilized the activation functions of a CNN and 

dynamic programing for a moving window to estimate next beat 

positions. There are several arguments against the moving window 

strategy. These include the potential for computational overload, the 

intrinsic difficulty in adapting these tracking strategies to causal and 

real-time scenarios, and the lack of continuity between windows 

[12].  

There are a few OBT methods that do not use a moving window. 

IBT [12] is an OBT model based on the Beatroot [2] multi-agent 

offline approach, which infers beat positions without using a 

dynamic window. However, the initialization of the agents can be 

difficult, needing up to 5 seconds of audio. Shiu et al. [15] utilized 

Kalman filtering for beat tracking, but the underlying Gaussian 

assumption of the observation distribution can be too strong.  

In contrast, particle filtering (PF) is a more general nonparametric 

approach for sequential decision-making problems. Duan and Pardo 

[16] used PF for online audio score alignment. Cemgil and Kappen 

[17] applied PF in tempo tracking and rhythm quantization given a 

prior on quantization locations. Hainsworth and Macleod [18] used 

it in tempo tracking. According to [17-18], a critical component of 

PF methods is the choice of appropriate input features and the 



related observation models. Another practical consideration is 

reducing the number of particles to speed up inference for real-time 

applications. 

In this paper, we propose a novel OBT model that integrates a 

unidirectional RNN for feature extraction and particle filtering for 

online decision making. In particular, the RNN predicts a beat 

activation function for each incoming audio frame following [25]. 

For the particle filtering part, we utilize an efficient state space and 

transition model [21], which speed up the process and reduce the 

need to use a great number of particles. We also propose a new 

observation model. We further propose informative priors to 

improve the performance. Experiments on the GTZAN dataset show 

that our proposed model outperforms state-of-the-art methods and 

can be utilized in situations with weaker processing capacity. 

 
2. APPROACH 

 

In this section, we describe our DLB approach to music OBT. The 

name of the model reflects the fact that it does not require the beat 

activations of past frames to make an inference about the current 

frame. Here are two points to clarify though. 1) No need to look back 

is an intrinsic property of PF models, not limited to our system. 

However, we highlight this fact because such a characteristic can be 

advantageous for OBT applications. 2) By saying no need for past 

activations, we specifically refer to the inference stage that unlike 

moving window approaches, it does not need previous activations. 

We do recognize that activation generation process itself uses an 

RNN to implicitly model long-term dependencies in past data.    

 

2.1. Pre-processing  

 

RNN structures have been an interesting choice for many time series 

applications, since they consider the relationship between adjacent 

frames of data. In particular, many recent works in related fields take 

advantage of RNNs with BLSTM neurons. The main advantage of 

BLSTM over LSTM is its better performance, which originates from 

leveraging future data consideration in addition to past data. 

However, given that causality (which makes the future data 

inaccessible) is one of the main conditions in OBT applications, we 

chose to use an LSTM neural net trained to extract beat activations 

as the input of our PF inference model. In the preprocessing module, 

a Hann window is applied to the current frame of the audio signal 

with a size of 46 ms and hop size of 10 ms. Then, after obtaining the 

magnitude spectrogram, a logarithmically spaced filters ranging 

from [30, 17k] Hz with 12 bands per octave, corresponding to 

semitone resolution is applied. The first-order temporal differences 

are concatenated to the log-scaled spectrogram and then, the total 

spectrogram is fed to an ensemble of 8 pretrained LSTM nets. Their 

output is averaged to get current frame’s beat activation. Note that 

to obtain the activation from the ensemble of LSTMs, pretrained 

models obtained from Madmom python library [19] are used. After 

getting the activation of the current frame, we feed it to our PF 

inference block to classify it to either the beat or the non-beat class. 

  

2.2. Inference 

 

In this paper, we approach the problem from the PF localization 

perspective, which comprises of two steps of motion and correction. 

According to the importance sampling principle, a high dimensional 

probability distribution 𝑝(𝑥) = 𝑝′(𝑥)/𝐶 with an unknown model, 

parameters, and normalization constant 𝐶, can be represented by a 

large number (N) of independent samples 𝑥(𝑖) from a known 

arbitrary proposal distribution π(𝑥). Even though there is no strict 

limitation in choosing π(𝑥), choosing a closer one to the distribution 

of interest,  leads to a more efficient representation of 𝑝(𝑥). Thus:     
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Where 𝜔𝑖 = 𝑝′(𝑥(𝑖))/𝜋(𝑥(𝑖))is each particle 𝑖’s importance weight.  

        Now, consider the unknown distribution of interest 𝑝(𝑥𝑘|𝑦𝑘) 

in our decoding problem, where 𝑥𝑘 and 𝑦𝑘 are beat hidden states and 

the signal’s observations at each step 𝑘, respectively. Now, by 

considering Bayes filter, chain rule for the 1st order Markovian 

process, and assigning the proposal distribution equal to states 

transition probability, the problem is boiled down to a sequential 

Monte Carlo posterior calculation as follows: 
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Formulae (4) states that if we sample from a transition distribution 

(motion) as a proposal distribution of  𝜋, we can update the weights 

simply by multiplying them with the likelihood of the current frame. 

Thus, to infer beat positions using the posterior (1) estimation for 

each frame, the following algorithm will be used: 

 
1- Sample particles from proposal distribution (2) which in our 

case is transition probability. (motion)  

2- Compute the new importance weights (4) based on 

observation probability derived from LSTM Beat activations. 

3- Resample based on new normalized weights that discard 

unlikely hypotheses and generate more rational ones. (correction) 

4- Take the median of the positions of all particles and classify 

the frame as beat if it is within the beat boundary and is far from 

previous beat  with a dynamic time threshold equal to half of the 

median of all particle’s tempo.   

   

2.3. State space and transition model 

 

One popular state space model for such problems is the bar pointer 

model [20] which jointly models tempo and position within the bar 

as hidden variables. However, for the state space and transition 

model in this paper, rather than using the common bar pointer 

model, we implemented the model that is described in [21]. 

According to that, at each time frame k, the hidden state is referred 

to as 𝑥𝑘=[𝛷𝑘 , �̇�𝑘], with 𝛷𝑘 ∈ {1,2, . . . , 𝑀} denoting the position 

within the bar and  �̇�𝑘 ∈ {�̇�𝑚𝑖𝑛 , �̇�𝑚𝑖𝑛 + 1, . . . , �̇�𝑚𝑎𝑥} denoting the 

jumping intervals representing tempo of the current state. State 

space and transition probability are then defined as follows: 

  

𝑀 = ⌊ 
60

𝑇×∆
 ⌋                                    (5) 
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,      (6) 

Equation (5) relates each tempo in BPM denoted by T to its 

corresponding integer jumping interval M, and ∆ denotes frame hop 

size in seconds. Each row of the 2D state space shown in Fig.1 

represents a different M. Note that we model beat state space rather 

than bar state space. Equation (6) is the transition probability where 

𝜆 is the parameter to decide the sampling width, B is beat states 

collection (yellow dots in Fig. 1). To specify the B boundaries that 

determine beats/non-beat states, we propose three models as shown 

in Fig. 1. Model (a) sets a vertical line as beat/non-beat boundary. 

Model (b) considers a constant number of states at each row as beat 

states. Model (c) provides a smooth Gaussian transition between 𝑏𝑘  

and 𝛾. 

        We believe that our described model is very suitable for PF 

applications for two main reasons: 1- It needs fewer number of states 

compared to the original beat pointer model (→fewer number of 

particles can represent the state). 2- Allowing tempo shifts only in 

beat positions lowers computational cost. Instead of sampling in 

every step, we do it only in beat positions (B states), and for the rest 

of states, given that the tempo is the same, we only shift particles. 

Considering the transition model, to detect tempo changes, no jitter 

or particle noise is required. For double/half tempo investigation, 
some works add a Metropolis-Hastings step to the algorithm. 

However, it was found in [18] that this step was counterproductive. 

In this paper we tried two different models for double/half tempo 

investigation. One was adding some  probability terms to �̇�𝑘/2 and 

�̇�𝑘 × 2 in the first line of the transition probability (6). However, 

since the transition probability affects all the particles, it caused the 

model to diverge. The other method was adding double/half tempo 

investigation only to the median of tempi of all particles (interpreted 

as current frame’s tempo). So, we feed the information of the median 

of tempi to the resampling block as informative priors.  

  

2.3. Observation model 

 

In this paper, we present a new observation model in which, 

localization is conducted only using the presence of landmarks as 

follows: 

                    𝑝(𝑦𝑘|𝑥𝑘) = {
𝑏𝑘       𝑥𝑘   ∈    𝐵   
𝛾       𝑥𝑘   ∉    𝐵  

,                          (7) 

where 𝑏𝑘 is the beat activation of frame k, and 𝛾 is a small constant 

number (e.g., 𝛾 = 0.03). This means that in our approach, rather 

than using non-beat activations (which are the second output of the 

softmax in the RNN and fixed to be complementary to the beat 

activations) as clues in the likelihood function, we only rely on beat 

activations as landmarks and set all non-beat states probabilities to 

a small constant number. This is because the softmax output of the 

RNN is the posterior probability of beat/non-beat instead of the 

likelihood. Our experiments also showed that low beat activation 

(→high non-beat activation) does not necessarily mean that the 

frame is not a beat frame. In many cases, due to reasons like low 

percussive content or low frame energy, beat activations are weak. 

In traditional approaches, the complement of these activations 

encourages the model to classify some of the beat frames as non-

beat [21-25]. Figure 2 demonstrates the whole PF inference process. 

A demo of the performance of our model can be found in following 

footnote2. 

 
2  https://www.youtube.com/watch?v=u2Ee6WsNzoU 

Fig. 1: Different beat/non-beat boundary models in the state space. 

(a): fractional beat/non-beat discriminator (b): constant number 

discriminator. (c): Gaussian soft discriminator.   
 

3. EVALUATION 

 

In order to evaluate the performance of our online model, we 

compare it with state-of-the-art online methods as well as state-of-

the-art offline methods. 

  

3.2. Evaluation metrics   

 

In line with most other beat tracking publications, F-measure (F1) 

with a tolerance window of ±70 (ms) is reported as the main 

performance criteria. To investigate the required time for each 

method to become initialized, we evaluate with and without 

discarding the predictions of the first 5 seconds of each recording.  

  

3.2. Dataset 

 

We used GTZAN dataset [22-23], a large dataset containing 1000 

music pieces with a duration of 30 seconds each covering 10 

different music genres (e.g., blues, classic). We used the entire 

dataset as the test set to illustrate the performance of different 

methods in a more general fashion. It is important to note that this 

dataset is not used to train the RNN.  

  

3.3. Evaluation results 

 

The DLB model does not require informative priors in the 

initialization step. Therefore, to initialize early particles we used a 

random uniform distribution that gives the same chance of receiving 

a hypothesis to each state. N=1000 is the number of particles that 

are used in Table 1 evaluations. The transition parameter is λ=30, 

and for the observation model, the fractional discriminator with the 

parameter of 1/60 is used. As shown in table 1, for both 5SecSkip 

and NoSkip, The DLB method outperforms all state-of-the-art 

online beat tracking models. Comparison between two F1 columns 

in table 1 provides insights about the performance quality of 

different methods at the beginning, comparing to their general 

performance. Shifting from 5SecSkip to the NoSkip setting, the 

performance of ACF and IBT models decrease dramatically, while 

DLB and Aubio decline mildly. However, one important point to 

mention is that the IBT model's small number of agents must be 

initialized using the first 5 seconds of audio. It does not deliver any 

output during this time period. Similarly, the ACF model needs to 

wait for 6 seconds at the beginning to calculate the autocorrelation 

function to estimate beat positions. Note that in this evaluation, ACF 

is implemented in a causal fashion. Also, the lowest performing 

deference with and without skip belongs to Aubio. The reason is that 

unlike the DLB model, which initializes particles randomly and 

delivers results immediately (figure.2 a), Aubio is more patient and 
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by considering relations between a few early beats, comes up with 

more careful results at the beginning.  

 

In addition to online models, in the remainder of Table 1, 

performances of two offline methods are reported as well. The 

objective of considering offline methods is to compare between their 

inference and that of particle filtering. The compared offline models 

are resonating comb filters [24] and a dynamic Bayesian network 

[5], which is the state-of-the-art for offline beat tracking. It is 

important to note that even though the original offline models used 

BLSTM neurons in their RNN structure (which led to better 

performance in offline fashion), we replaced them with LSTM 

neurons in order to draw a fair comparison between DLB inference 

and those inferences. So, the input of all three models is common. 

Even considering DLB's causal setup, its performance is close to the 

non-causal DBN model. In addition to performance, the other very 

important factor in real-time usage is processing speed. PF models 

are slow in general. However, since our model uses an efficient state 

and transition model which only requires resampling in beat 

positions (for the rest of states, particles just shift forward by one 

step per frame) and uses stochastic universal sampling in the 

correction block (which only needs one random number generation 

rather than N random numbers for N particles), then our model using 

the default setting of N=1000 is already works in real time. 

However, to make it usable in situations with weaker processing 

capacity (e.g. microcontrollers), it is better to use a smaller number 

of particles.  

 

Table 1: F-measure report of online/offline beat tracking models 

and initialization time for online models (GTZAN dataset).   

Online beat tracking methods  

Method F-measure 

(5 Sec. skip) 

F-measure 

(without skip) 

Initialization 

elapse Time  

DLB 73.77 71.44 0 seconds 

ACF [7]  64.63 51.74 6 seconds  

IBT [12] 68.99 62.75 5 seconds 

Aubio [13] 57.09 55.91 3 consistent 
beat periods 

Offline beat tracking methods 

CF [24]  67.97 67.74 --- 

DBN [25] 77.75 77.36 --- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

 

Figure 3 demonstrates the performance of DLB model on the 

GTZAN dataset for different number of particles. We can see that 

for greedy filtering setups such as N=300, DLB performs almost as 

well as the default setting. For very greedy setups such as N=100, it 

is still in the same performance range with state-of-the-art methods. 

The reason for the performance robustness against a low number of 

particles is that by using the efficient space state, positions and tempi 

can be represented with a smaller number of states. Also, contrary 

to the double/half tempo investigator’s ineffectiveness in the high 

number of particles, they somewhat assist the performance in the 

settings with low number of particles, by adding a wider viewpoint 

to monitor. 

 

 

 

 

 

 

 

 

    

 

 

Fig. 3: DLB performance for different number of particles.  

 

4. CONCLUSIONS AND FUTURE WORK  

 
In this paper, we presented a novel online beat tracking method that 

leverages the beat activations of a unidirectional RNN in a 

sequential Monte Carlo particle filtering paradigm to infer music 

beat positions. By utilizing an optimized structure, we improved 

particle filtering performance in online beat tracking application. 

The proposed model is efficient and significantly outperforms state-

of-the-art online beat tracking models. Also, we found that the 

performance of our casual inference model is close to that of non-

casual state-of-the-art offline models. One direction for future work 

is to consider more rhythmic information in the model such as 

downbeat inference and meter analyses.  

 

 

 

 

 

Fig. 2: Proposed PF inference process. (a): particles are initialized randomly and start to move right one step per frame (b): particles 

within the beat boundary gain weight while many others get discarded, when the first strong beat activation arrives. (c): significant 

gatherings move right with different paces. (d): Upon the next beat activation’s arrival, many gatherings are discarded and the one with 

the correct tempo survives; a few double tempo investigators are also added. Blue line is the median of particles’ positions.      
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