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Abstract

In this paper, an online score-informed source separation
system is proposed under the Non-negative Matrix Factoriza-
tion (NMF) framework, using parametric instrument models.
Each instrument is modelled using a multi-excitation source-
filter model, which provides the flexibility to model different
instruments. The instrument models are initially learned on
training excerpts of the same kinds of instruments, and are then
adapted, during the separation, to the specific instruments used
in the audio being separated. The model adaptation method
needs to access the musical score content for each instrument,
which is provided by an online audio-score alignment method.
Source separation is improved by adapting the instrument
models using score alignment. Experiments are performed to
evaluate the proposed system and its individual components.
Results show that it outperforms a state-of-the-art comparison
method.

Keywords: NMF, online, score-informed, instrument-models,
adaptive, score alignment, source separation

1. Introduction

The goal of Sound Source Separation (SSS) is to segregate
constituent sound sources from an audio signal mixture. SSS
enables all kinds of users, from amateurs up to professionals,
to work with separated sources. The SSS task is of interest
because a lot of direct user applications can be developed with
it. Personalizing a live concert by letting the listener adjust the
volume of individual instruments is one application of online
SSS. Music education applications can be developed with both
offline and online SSS methods. For example, the sound of
one instrument can be removed from the recording, so that
a live musician could perform the removed part, using the

Correspondence: F.J. Rodriguez-Serrano, EPSL Alfonso X El Sabio 28, 23700 Linares, Jaen, Spain. E-mail: fjrodrig@ujaen.es

recording as an accompaniment. Also, a rehearsal of several
musicians could be recorded and separated online, at the end
of the rehearsal they would have the separated recordings in
order to check for mistakes and improve their performance.
The separated sources would be available without the need
to record them with a multichannel system and a specialized
studio. Also, SSS is a useful preprocessing stage for other
research tasks, such as automatic music transcription (Gainza
& Coyle, 2007), structured coding (Viste & Evangelista, 2001)
and beat tracking (Chordia & Rae, 2009). Using separated
sources simplifies all these tasks, improving their results even
when source separation is not perfect.

Depending on the number of sources (musical instruments)
and sensors (microphones) used in the mixed signal recording,
the SSS problem can be classified into three cases. Overdeter-
mined cases are those where the number of sensors is
larger than the number of sources (Hyvarinen & Oja, 2000;
Zibulevsky, Kisilev, & Zeevi, 2002). In determined cases the
number of sensors and sources is the same. Finally, in under-
determined cases, there are more sources than sensors. The
overdetermined and determined cases are usually addressed
with methods (e.g. Independent Component Analysis or Inde-
pendent Subspace Analysis) that cannot be applied when the
number of sources exceeds the number of sensors, since they
depend on having at least as many sensors as sound sources
(Babaie-zadeh & Jutten, 2006). The underdetermined case is
the most common one for music recordings and performances
(e.g. mono or stereo mixtures of three or more instruments
or voices). An important and commonly used framework for
addressing the underdetermined case is Non Negative Matrix
Factorization (NMF) (Bryan et al., 2000; Virtanen & Klapuri,
2006).

Depending on the use, or not, of prior information, the
SSS task is called Informed Source Separation (ISS), or Blind

© 2015 Taylor & Francis
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2 Francisco J. Rodriguez-Serrano et al.

Source Separation (BSS) (Comon & Jutten, 2010). To date, the
performance of BSS is very dependent on the signal nature and
does not reliably achieve good enough quality on the separated
sources for practical use in music applications. Instead, the
way to obtain robust separation in practice is to use ISS.
There are several types of information that can be used in
ISS. Spectral information can be introduced by using instru-
ment models when the instruments are known in advance
(Ewert & Muller, 2012; Fritsch & Plumbley, 2013; Rodriguez-
Serrano, Carabias-Orti, Vera-Candeas, Canadas-Quesada, &
Ruiz-Reyes, 2013; Simsekli & Cemgil, 2012). Also, musical
score information can be used if the score and audio are well
aligned (Duan & Pardo, 2011; Ewert & Muller, 2012; Fritsch
& Plumbley, 2013; Ganseman, Scheunders, Mysore, & Abel,
2010; Hennequin, David, & Badeau, 2011). In this paper we
deal with the problem of online score-informed separation of
harmonic musical sources from a single-channel recording.
We combine the audio-score alignment model proposed in
Duan and Pardo (2011) with the Multi-excitation per Instru-
ment (MEI) NMF model proposed in Carabias-Orti, Virtanen,
Vera-Candeas, Ruiz-Reyes, and Cañadas-Quesada (2011) to
build our baseline system. We then advance this system by
(1) adapting the pre-learned instrument models towards the
real instruments played in the music with the information of
score alignment, and (2) designing online algorithms for the
instrument adaptation and source separation. Therefore, our
final system takes a music score and pre-learned instrument
models as prior information, aligns the score with the audio,
updates the instrument models towards the real played instru-
ments, and separates the audio mixture, all completed in an
online fashion.

In the experiments, we show that the use of instrument
models and the adaptation of these models to the instruments
used in the musical performance, significantly improves the
source separation performance. We also show that the pro-
posed online algorithm separates sources almost as well as
the offline version of the algorithm.

1.1 Related work

Ewert and Muller (2012) proposed a system that initializes the
instrument models (spectral patterns) of different instruments
as a harmonic comb with a constant declining amplitude, and
adapts the models to real played instruments. While this does
not require a pre-learning phase of instrument models as in
our proposed system, the initialization may not fit well to
instruments that have many fluctuations in the harmonics such
as clarinet and bassoon.

Fritsch and Plumbley (2013) presented a method for mu-
sical audio source separation, using the information from the
musical score to supervise the decomposition process based
on an NMF framework. They initialize the instrument models
with those pre-learned from a MIDI-synthesized audio, and
then adapt them to the real played instruments in the mixture.
This initialization is closer to the real played instruments than

the harmonic comb initialization in Ewert and Muller (2012),
but it depends heavily on the synthesizer.

The main features of our proposed method that distinguish
it from the adaptation and separation approaches in Ewert
and Muller (2012), and Fritsch and Plumbley (2013) are: (1)
the initial instrument models are learned from real instrument
recordings, instead of artificial templates or synthesized audio;
(2) the adaptation of our models is performed using only non-
overlapped partials, identified using score information (this
makes the method more robust in polyphonic scenarios); and
(3) our method only requires access to current and past audio
frames when separating the current audio frame (i.e. works
online), while both Fritsch and Plumbley (2013), and Ewert
and Muller (2012) require access to future audio frames (i.e.
are offline methods).

In this paper, we use the term algorithmic latency as the
delay between receiving the signal and starting to perform
separation. In our approach, the algorithmic latency is half a
frame, because we start to align and separate a frame right
after we receive it. In practice, the real latency depends not
only on the algorithmic latency but also on the implemen-
tation. However, the latency introduced by the implementa-
tion can be improved by using more advanced computers or
more optimized programming while the algorithmic latency
cannot.

There are online approaches for source separation under the
NMF-SSS framework (Duan, Mysore, & Smaragdis, 2012;
Joder, Weninger, Eyben, Virette, & Schuller, 2012; Simon &
Vincent, 2012). However, Duan et al. (2012), and Joder et al.
(2012) were only tested in speech enhancement applications
as they were designed to adapt one source (speech or noise) but
keep the other source fixed during separation. In our proposed
method, instrument models of multiple instruments of the
music are adapted simultaneously. The method proposed in
Simon and Vincent (2012) is suitable for multichannel signals,
but not for monaural ones. The mixing information (which
represents the spatial information) is very important for their
system. Also, random initialization of the model parameters
without any extra information would make it difficult to discri-
minate between the different sources at monaural sources. To
date, none of these approaches (Duan et al., 2012; Joder et al.,
2012; Simon & Vincent, 2012) have been applied to work in
the score-informed source separation setting.

Besides Duan and Pardo (2011), there are several other on-
line polyphonic audio-score alignment methods (Cont, 2006,
2006; Dixon and Widmer, 2005). We use the method proposed
in Duan and Pardo (2011) because it is designed to align multi-
instrument polyphonic music audio with score information
and it is has been tested on multi-instrumental polyphonic
audio with clear objective measures. Despite the fact that the
proposal of Dixon and Widmer (2005) is tested over piano
music and multi-instrument signals, its performance is not
evaluated over multi-instrument signals with objective results,
due to the lack of reliable annotations. Other methods are only
designed for (Cont, 2006), or tested on (Cont, 2010), single-
instrument polyphonic audio.
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Online Score-Informed Source Separation with Adaptive Instrument Models 3

The rest of the paper is structured as follows. Section 2
reviews the background that the proposed methods are built
on. Section 3 describes the proposed methods. Experiments
and the comparison to other state-of-the-art methods are
described in Section 4. Finally, we draw conclusions and dis-
cuss future work in Section 5.

2. Background

In this section the methods from the bibliography that the pro-
posed system builds on are summarized. The aim of the pro-
posed work is to implement an Online Score-Informed Source
Separation System with Adaptative Instrument Models. It is
uses an NMF framework initialized with the score information
for the activations and previously trained instrument models
for the spectral patterns. This framework, suitably modified,
should be able to update these models while factorizing the
signal in an online manner.

2.1 Audio-score alignment

The audio-score alignment module of the proposed score-
informed source separation method was proposed in Duan
and Pardo (2011). It is an online algorithm that aligns a score
to a piece of polyphonic music audio played by multiple
instruments. The basic idea is to view an audio performance
as a path in a two-dimensional state space, where the two
dimensions are score position and tempo, respectively. The
state space is continuous and the path is hidden. The aim is
to infer this path from the observed audio signal in an online
fashion.

Mathematically, the n-th time frame of the audio perfor-
mance is represented as yn , and is associated with a two-
dimensional state variable sn = (xn, vn)T , where xn is its
score position (in beats), vn is its tempo (in beats-per-minute
(BPM)) and T denotes the matrix transposition. The aim is to
infer the current score position xn from current and previous
observations y1, . . . , yn . This problem is modelled by a hidden
Markov process.

A hidden Markov process model contains two parts: a pro-
cess model p(sn|sn−1) that describes how the states transition
from one to another, and an observation model p(yn|sn) that
describes the likelihood of a state sn generating the observation
yn . The difference of a hidden Markov process from a finite-
state hidden Markov model is that the states are continuous
variables and they can take infinitely many values.

The process model p(sn|sn−1) is defined through two dyn-
amic equations. The score position changes from the previous
position according to the tempo. The tempo changes through a
random walk or does not change at all, depending on where the
position is. The observation model p(yn |sn) is defined through
the multi-pitch estimation likelihood model proposed in Duan,
Pardo and Zhang (2010). For any set of pitches, the multi-pitch
estimation likelihood model computes its likelihood to fit the
observed audio frame. Now, given a hypothesized state, the
set of pitches that are supposed to be played in the n-th audio
frame can be read from the score at the score position of the

state. By plugging the set of score pitches into the multi-pitch
estimation likelihood model, one can calculate the likelihood
this set of pitches would result in the observed audio frame.
The higher the likelihood is, the better fit the set of pitches has,
and the better the state hypothesis is. Given the process model
and the observation model, Duan and Pardo (2011) use particle
filtering to infer the hidden states from the observations, one
frame after another, in an online fashion.

2.2 Signal factorization with MEI

2.2.1 Multi-excitation per instrument (MEI)

Let X (t, f ) be the true time–frequency representation of an
audio mixture (e.g. a recording of several musical instru-
ments), where t is time and f is a frequency of analysis. Let
X̂(t, f ) be an estimate of the true mixture. We define a spectral
basis function b( f ) as a function that outputs the relative
amplitudes of each frequency. We use spectral basis functions
to represent the instantaneous timbre of sound sources, like
musical instruments. If the timbre of an instrument is different
in different situations (e.g. when a musical instrument plays
different pitches) multiple spectral basis functions (one per
pitch) can be associated with the instrument.

The MEI framework tries to decompose X̂(t, f ) of the
audio mixture into a linear combination of spectral basis func-
tion:

X (t, f ) ≈ X̂(t, f ) =
J∑

j=1

N∑
n=1

gn, j (t)bn, j ( f ), (1)

where bn, j ( f ) is the n-th basis for the j-th instrument; gn, j (t)
is its gain at frame t . When dealing with harmonic instru-
ment sounds in this paper, each spectral basis function ideally
corresponds to a pitch, and the gain represents the activation
strength of the pitch.

The multi-excitation model proposed by Carabias-Orti et al.
(2011) is an extension of the regular excitation-filter model
presented in Virtanen and Klapuri (2006). The regular
excitation-filter model has origins in speech processing and
sound synthesis. In speech processing, the excitation models
the sound produced by the vocal cords, whereas the filter
models the resonating effect of the vocal tract (Rabiner &
Schafer, 1978). In sound synthesis, excitation-filter (or source-
filter) synthesis (Välimäki, Pakarinen, Erkut, & Karjalainen,
2006) colours a spectrally rich excitation signal to get the
desired sound.

The spectral basis functions bn, j ( f ) in Equation 1 depend
on both pitch and instrument, and this results in a large num-
ber of functions, where the value at each frequency for each
function must be estimated. To reduce the number of values
that must be learned, Virtanen and Klapuri (2006) model each
basis function bn, j ( f ) as the product of a pitch-dependent
excitation spectrum en( f ) and an instrument-dependent filter
h j ( f ):

bn, j ( f ) = h j ( f )en( f ), n = 1, ..., N , j = 1, ..., J. (2)
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4 Francisco J. Rodriguez-Serrano et al.

en( f ) encodes the pitch information. h j ( f ) encodes the fre-
quency response of the resonance body of the instrument.
This approach significantly reduces the number of parameters.
However, since a piece of music can contain many different
pitches and for each pitch a full spectrum is needed to represent
en( f ), there are still many parameters to tune.

To further reduce the need to learn values from data, several
studies (Badeau, Emiya, & Emiya, 2009; Klapuri, Virtanen,
& Heittola, 2010; Heittola, Klapuri, & Virtanen, 2009) intro-
duce the excitations en( f ) as frequency components of unity
magnitude at integer multiples of the fundamental frequency
of the pitch n. This results in modelling the spectral basis
functions as the product of an instrument-dependent filter and
a harmonic comb excitation, where each component of the
comb is a shifted frequency response of the window function:

bn, j ( f ) =
M∑

m=1

h j (m f0(n))G( f − m f0(n)), (3)

where M is the number of harmonics, f0(n) is the fundamental
frequency of pitch n, and G( f ) is the magnitude spectrum of
the window function. The G( f − m f0(n)) term is included
because a harmonic constraint is imposed. This harmonic
constraint considers that harmonic signals are produced as
a sum of harmonic-related tones.

The above unity-magnitude harmonic comb excitation
model, together with the instrument-dependent filter (which
often has a smooth frequency response), is able to represent
some instruments with a smooth envelope of their spectral
peaks. However, the spectral envelope of other instruments,
such as the clarinet, are not smooth and they cannot be well
represented with a flat excitation function. For example, the
second harmonic of a clarinet note is often very soft, no matter
what pitch the note has. This makes it impossible to represent
the spectral envelopes of different clarinet notes with a single
filter. More details can be obtained in Carabias-Orti et al.
(2011) where examples for different instruments and pitches
are presented.

An interesting alternative is the use of the multi-excitation
model proposed in Carabias-Orti et al. (2011). This model
defines the excitation spectrum as a linear combination of a
few excitation basis vectors. In fact, the regular excitation-
filter model presented in Equation 2 requires an excitation
per pitch (per instrument) en( f ), while the multi-excitation
model just requires as few as I = 2 excitations per instrument
to properly model the instruments from their test database
(Carabias-Orti et al., 2011).

Under the multi-excitation model, the excitation per pitch
and instrument is defined as

en, j ( f ) =
∑

m

(∑
i

wi,n, jvi,m, j

)
G( f − m f0(n)), (4)

where m = 1, ..., M is the index of the harmonics; and i =
1, ..., I is the index of excitation basis vectors (I � N ).
vi,m, j is the m-th harmonic of the i-th excitation basis vector
for instrument j ; wi,n, j is the weight of the i-th excitation

basis vector for pitch n and instrument j . G ( f − m f0(n))

is the window transform placed at the frequency of the m-th
harmonic of the n-th pitch.

The key of the MEI model is the separation of the excitation
en, j ( f ) into two parts: the excitation basis vectors vi,m, j and
their weights wi,n, j . For each instrument j , there are I exci-
tation basis vectors of dimension M . The amplitude of each
partial m of the final excitations en, j ( f ) is a linear combination
of I excitation basis vectors vi,m, j weighted by wi,n, j . The
excitation basis vectors are instrument dependent but are not
pitch dependent. The weights in the linear combination, how-
ever, are both instrument dependent and pitch dependent. The
excitation basis vector contains 20 partials and two excitation
basis vectors are used for each instrument. There are N pairs
of weights, one pair for each pitch index. The weights are
the scalar values that multiplies each excitation basis vector
and they are linearly combined to obtain the 20 excitation
partials for the concrete pitch. The spectral patterns are finally
obtained with the multi-excitation model as

bn, j ( f ) =
∑
i,m

h j (m f0(n))wi,n, jvi,m, j G( f − m f0(n)). (5)

All these parameters of the MEI model are summarized at
Table 1.

Different instruments have different pitch ranges. For
example, the pitch range of the bassoon covers 37 semitones
while the pitch range of the violin covers 45 semitones. In
this paper, we use the resolution of 1/8 semitones for the pitch
indexes. Therefore, the number of the pitch indexes N for
bassoon is 37 × 8 = 296 semitones while that for violin is
45× 8 = 360 semitones.

While audio is typically encoded in a time–frequency rep-
resentation using linearly-spaced frequency bins, we convert
the input Short Time Fourier Transform (STFT) with linear-
frequency into a log-frequency representation. This lets us use
the same 1/8 semitone-spaced indexes for both the frequency
indexes F and the pitch indexes N used to build our spectral
pattern models. There are two reasons that we use the same
resolution for frequency indices and pitch indices. First, the
spectral pattern (frequency) of a basis function (pitch) is not
sensitive to small deviations of the played pitch. In other
words, two different sounds of the same instrument and pitch
can be very different in linear frequency with a small deviation
in logarithmic pitch (specially at high frequencies) but not
so different when a logarithmic frequency resolution is used.
Second, the dimensionality of the spectrogram is reduced and
the computational complexity of factorization is significantly
decreased. The use of the log-frequency representation and
the selected analysis parameters (sample rate of 44,100 Hz,
window size of 128 ms and STFT of 8192 points) results in
some low frequency indexes without associated frequency
bins in the STFT. These indexes are not used. This results
in a frequency index with 608 values, which covers from the
lowest frequency generated by the tested instrument up to
22,050 Hz.
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Online Score-Informed Source Separation with Adaptive Instrument Models 5

Table 1. Parameters and their sizes of the MEI signal model.

Parameter Size Description

X (t, f ) F × T Time/Frequency signal input
X̂(t, f ) F × T Time/Frequency signal reconstruction
gn, j (t) N × T × J Gain for each pitch and instrument at each frame
h j ( f ) F × J Filter for each instrument at each frequency
vi,m, j I × M × J Excitation basis vectors. I vectors with M values for each instrument
wi,n, j I × N × J Weight of each excitation basis vector for each pitch and instrument
bn, j ( f ) N × F × J Basis functions based on h j ( f ), wi,n, j and vi,m, j , as described in Equation 5
G ( f − m f0(n)) F × 1 Spectrum of the analysis window placed at the m f0(n) frequency
F 608 Number of frequency indexes with 1/8 semitones as maximum resolution
T – Number of analysis frames
N – Instrument-dependent number of pitch indexes (1/8 semitones resolution)
J – Number of sources (instruments)
M 20 Number of harmonics considered per excitation
I 2 Number of excitation basis vectors per instrument

The MEI model parameters reduction can be demonstrated
with a simple example. The total number of parameters with
the MEI model, the regular excitation-filter model and the
harmonic comb excitation version are calculated for the clar-
inet case. The clarinet can play 37 semitones on the chromatic
scale, which correspond to 296 pitch indexes (N = 296) with
the 1/8 semitone resolution used in this work. The source filter
model needs 608× 1 = 608 parameters (F × J ) for the filter
(h j ( f )) and 296 × 20 = 5920 parameters (N × M) for the
excitation basis vectors (en( f )), which becomes a total 6528
parameters for the clarinet source filter model. In the case
of the harmonic comb excitation, the excitation parameters
are not required and only 608 parameters are needed for the
filter component. According to Table 1, the MEI model needs
the same 608 parameters for representing the filter (h j ( f )),
2 × 20 × 1 = 40 parameters (I × M × J ) for representing
the excitation basis vectors (vi,m, j ) and 2 × 296 × 1 = 592
parameters (I × N × J ) for representing the weights of the
excitation basis vectors (wi,n, j ). This means that MEI needs
1240 parameters to represent a clarinet model.

The lightest model is the harmonic comb excitation, how-
ever its flat excitation component is not able to represent a
non-smooth spectral envelope, as in the case of the clarinet
(Carabias-Orti et al., 2011). On the other hand, the regu-
lar excitation-filter and MEI models both correctly represent
the spectral behaviour of different instruments. In the given
example, the MEI model reduces the number of parameters
used to represent a clarinet model by 77%, compared to the
regular excitation-filter model. To summarize, the MEI model
preserves the flexibility of the regular excitation-filter model
with a lower number of parameters.

Given the MEI model, the magnitude spectra of the mixture
signal can be decomposed by substituting Equation 5 into
Equation 1:

X̂(t, f ) =
∑

n,m,i, j

gn, j (t)h j (m f0(n))wi,n, j vi,m, j G( f − m f0(n)).

(6)

Given the NMF model in Equation 6, we want to estimate
the parameters so that the reconstruction error between the
observed spectrogram X (t, f ) and the modelled one
X̂(t, f ) is minimized. The β-divergence (Fevotte & Idier,
2011; Vincent, Bertin, & Badeau, 2010) is used here as the
cost function to define the reconstruction error, where β is
in the range of [0, 2]. The use of the β-divergence as distor-
tion measure makes the system flexible and it allows one to
study its behaviour with the most used divergences (Euclidean
or β = 2, Kullback–Leibler or β = 1 and Itakura–Saito
or β = 0). In Carabias-Orti et al. (2011) the MEI model is
employed only with the Kullback–Leibler divergence, which
corresponds to the case β = 1. In Fritsch and Plumbley (2013)
and Hennequin et al. (2011) β-divergence is used, but they set
β = 1 which is the same as using KL divergence. In Section
4, a study of the separation performance in function of the
parameter β is shown.

In Lee and Seung (2001), an iterative algorithm based on
multiplicative update rules is proposed to obtain the model
parameters that minimize the cost function. Under these rules,
Dβ(Xt ( f )‖X̂t ( f )) is non-increasing at each iteration and the
non-negativity of the bases and the gains is ensured. The mul-
tiplicative update rule (see Lee and Seung (2001) for further
details) for each scalar parameter θl is given by expressing the
partial derivatives of the∇θl Dβ as the quotient of two positive
terms ∇−θl

Dβ and ∇+θl
Dβ :

θl ← θl
∇−θl

Dβ(X (t, f )||X̂(t, f ))

∇+θl
Dβ(X (t, f )||X̂(t, f ))

, (7)

assuming ∇θl D = ∇+θl
D −∇−θl

D. The main advantage of the
multiplicative update rule in Equation 7 is that non-negativity
of the bases and the gains is ensured, resulting in a non-
negative matrix factorization (NMF) algorithm.

There are other proposals in the literature to address the
factorization problem. For instance,Alternative Least Squares
(ALS) is proposed by Cichocki and Zdunek (2007). Also,
Gillis and Luce (2014) propose an optimization of the
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6 Francisco J. Rodriguez-Serrano et al.

factorization process by linear programming. Here we adopt
the mostly widely used Lee and Seung algorithm.

3. The proposed method

In this section, we describe the proposed online adaptive score-
informed source separation method. To make the presentation
clear, we present the method in four steps, each built upon the
previous step. In Section 3.1 the training process is described.
In Section 3.2, we present a basic source separation algorithm,
where the instrument models are learned from the training data
and kept fixed during separation. In Section 3.3, we propose
to adapt the trained instrument model to the real instrument
in the audio mixture. In Section 3.4, we make the separation
and adaptation online.

3.1 Instrument modelling

The model reviewed in Section 2.2.1 requires an estimate
of the spectral basis functions bn, j ( f ) for each note n and
instrument j . Each function bn, j ( f ) is learned in advance
using isolated notes of solo instrument recordings in the RWC
database (Goto, 2004; Goto, Hashiguchi, Nishimura, & Oka,
2002) (for more details see the experimental setup section).
We initialize each gain gn, j (t) from the ground-truth pitch
transcription of the training data, i.e. its value is set to one if
the pitch n is active in the frame t , and zero otherwise. The
rest of the MEI model parameters (Table 1) are initialized to
positive random values. All the parameters are then updated
iteratively, as described in Algorithm 1, until the algorithm
converges. The updating equations are as follows and they
are obtained by applying Equation 7 to each of the model
parameters.

gn, j (t)← gn, j (t)∑
f,m,i

wi,n, jvi,m, j h j ( f )X (t, f )X̂(t, f )β−2G( f − m f0(n))

∑
f,m,i

wi,n, jvi,m, j h j ( f )X̂(t, f )β−1G( f − m f0(n))
,

(8)

h j ( f )← h j ( f )∑
t,m,n,i

wi,n, jvi,m, j X (t, f )X̂(t, f )β−2G( f − m f0(n))

∑
t,m,i

wi,n, jvi,m, j X̂(t, f )β−1G( f − m f0(n))
, (9)

vi,m, j ← vi,m, j∑
t, f,n

h j ( f )wi,n, j X (t, f )X̂(t, f )β−2G( f − m f0(n))

∑
t, f,n

h j ( f )wi,n, j X̂(t, f )β−1G( f − m f0(n))
, (10)

wi,n, j ← wi,n, j∑
t, f,m

h j ( f )vi,m, j X (t, f )X̂(t, f )β−2G( f − m f0(n))

∑
t, f,m,i

h j ( f )vi,m, j X̂(t, f )β−1G( f − m f0(n))
. (11)

It is important to remember that gn, j (t) represents the gain
for note n at frame t for instrument j . Also h j ( f ) is the filter
that represents the resonating body of each instrument. Each
vi,m, j is an excitation basis vector. There are m excitation basis
vectors for each instrument, which are linearly combined with
the corresponding weights wi,n, j .

Algorithm 1 Training algorithm description
1 Compute X (t, f ) from a solo performance for each instrument

in the training database.
2 Initialize gains gn, j (t) with the ground-truth pitch transcription

and the rest of parameters h j ( f ), vi,m, j and wi,n, j with random
positive values.

3 Update source-filter h j ( f ) following Equation 9.
4 Update excitation basis vectors vi,m, j following Equation 10.
5 Update the weights of the excitation basis vectors wi,n, j

following Equation 11.
6 Update gains gn, j (t) following Equation 8.
7 Repeat steps 3-6 until the algorithm converges (or the maximum

number of iterations is reached).
8 Compute spectral basis functions bn, j ( f ) for each instrument j

using Equation 5.

Once the MEI parameters are estimated with the NMF
framework, the spectral basis functions bn, j ( f ) for each pitch
of the instrument are computed. As a frequency resolution of
1/8 semitones is used, each index from f represents one of
the resulting frequency ranges. The training procedure is sum-
marized at Algorithm 1.

Each spectral basis function bn, j ( f ) required at the fac-
torization stage is computed by the training algorithm. For
practical applications, the trained instrument models and the
real played instruments have some differences (the trained
models are not obtained from the same physical instruments).
In this article, we first apply the trained instrument models to
perform the separation. We then describe a way to adapt the
trained instrument models to the real played instruments.

3.2 Separation with fixed instrument models

This is the basic separation algorithm. Here the NMF factor-
ization framework is composed of two parameters, the gains
gn, j (t) and the spectral patterns bn, j ( f ), as described in Equa-
tion 1, but it now includes more than one instrument, specified
by index j . Algorithm 2 shows an overview of the separation
system with fixed instrument models.

Algorithm 2 Separartion algorithm with fixed instrument
models
1 Compute X (t, f ) from a the audio mixture to separation.
2 Initialize gains gn, j (t) with the ground-truth pitch transcription

and the basis functions bn, j ( f ) with the trained ones from
Algorithm 1.

3 for C iterations do
4 Update gains gn, j (t) following Equation 8
5 end for
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Online Score-Informed Source Separation with Adaptive Instrument Models 7

The MIDI score-provided information is used to initialize
the gains gn, j (t) for the NMF factorization.Arandom positive
value is given when the aligned MIDI score indicates that
the corresponding pitch indexes of instrument j are active at
frame t . The gains associated with non-active pitches of the
instrument j at frame t are set to zero. The process to align the
score with the mixed signal is explained in Section 2.1 and it
follows Duan and Pardo (2011).

Once the gains gn, j (t) are initialized, and using the trained
instrument models bn, j ( f ), an iterative algorithm is run as
shown in Algorithm 2. This algorithm iteratively updates
gn, j (t) according to Equation 8, while keeping bn, j ( f ) fixed.
Once the gains are estimated, the separated signals are com-
puted as is described in Section 3.5.

Although the NMF factorization framework is intrinsically
offline, when spectral patterns bn, j ( f ) are fixed, the only
parameters to be updated are the gains gn, j (t). When using
the updating equation (see Equation 8), the gains at frame
t just depend on the input signal X (t, f ) at frame t and,
consequently, the algorithm becomes online. Another inter-
pretation is that the factorization only has to compute the
gain at frame t associated to each fixed spectral pattern that
minimizes the divergence between the input signal and the
reconstructed signal at frame t . In another work (Kim & Park,
2008), this problem is solved using nonnegative least squares
which allows one to implement low complexity algorithms
but is only suitable for Euclidean distance (β = 2).

3.3 Adapt instrument models

The pre-learned instrument models are an approximation to
the real spectral patterns occurring in the mixture. However,
mismatch between training and testing instruments can be
large due to the physical differences between the training
and testing instruments, the performing style difference of
the performers, and the acoustical difference of the recording
environments. We propose to adapt the learned models to
the instruments in the mixed signal during the factorization
process. In this way, the models will fit better with the recorded
signal, improving separation results. The adaptation of instru-
ment models with the score alignment information is the main
novelty of this work.

To do so, we initialize gn, j (t) from the aligned MIDI score-
provided information as in the basic separation method, and
also initialize instrument models to the pre-learned ones as
described in Section 3.2. The adaptation of the MEI model
was also addressed in Carabias-Orti et al. (2011) but without
using the score information. In that scenario, the adaptation
of instrument models suffers from the interference between
overlapping harmonics from different instruments in the poly-
phonic excerpts. This problem can be handled when the score
information is available. Also, the results vary as a function
of the parameters updated in the model. In Carabias-Orti et al.
(2011), it is shown that results are seriously degraded when
adapting the weights wi,n, j . This is caused by the huge number
of free parameters to be adapted, in contrast to the number

required to adapt the excitation basis vectors vi,m, j . However,
adapting the instrument filter h j ( f ) does not degrade the
results.

In the proposed separation system, the score alignment
information is available. But mistakes at the alignment process
have consequences for the updating procedure. The model is
sometimes updated with information that does not correspond
to the notes played by the instruments. In order to relieve
alignment errors affecting the model adaptation, we propose
to use fixed weights wi,n, j . As reported in Carabias-Orti et al.
(2011), the adaptation of weights is very sensitive, due to the
large number of parameters to be updated. In the example
of the clarinet model, the weights have 592 values while
excitation basis vectors have only 40 values. Updating of the
instrument filter h j ( f ) and the excitation basis vectors vi,m, j

but not the weights wi,n, j lets us fit the model to the mixture
audio while keeping the model robust to alignment errors.
Also, preliminary tests showed this approach gets better results
than updating all model parameters.

At each iteration of the NMF algorithm, we update the gains
gn, j (t), the instrument filters h j ( f ) and the excitation basis
vectors vi,m, j . At each iteration, the gains updating equation
is computed using Equation 8, as in Section 3.2. However, the
updating of the instrument model parameters h j ( f ) and vi,m, j

cannot be computed with the same equations as in the training
stage. In the training stage, each note is played alone, so there
are no overlapped partials. In the separation stage, notes from
different instruments are played simultaneously and some of
their harmonics can be overlapped. In these cases, the informa-
tion for adapting the models from the overlapping harmonics is
corrupted due to interference. Depending on the relative phase
difference between the overlapped partials at each frame, this
interference can be constructive or destructive. Consequently,
the adaptation of model parameters should be implemented
without influence from the partials where multiple instruments
overlap.

We use the aligned score to identify time–frequency regions
where instruments may have partials that overlap.After initial-
izing the gains with the score information, the estimated signal
for instrument j with the trained models can be computed as

X̂ j (t, f )

=
∑
n,m,i

gn, j (t)h j (m f0(n))wi,n, jvi,m, j G( f − m f0(n)).

(12)

To select the overlapped time–frequency zones for each
instrument

{
f ′, t ′, j ′

}
, an energy estimation per instrument is

computed by using Equation 12. When the energy estimation
for instrument j ′ is not predominant at a time–frequency point
(t ′, f ′), this point is added to the overlapped time–frequency
set

{
f ′, t ′, j ′

}
. The energy of instrument j ′ is considered as

predominant, at a time–frequency point (t ′, f ′), when the
ratio between its own estimated energy |X̂ j ′(t, f )|2 and the
energy of the rest of instruments

∑J
j=1, j �= j ′ |X̂ j (t, f )|2, is

above 10 dB. Otherwise, this is considered as an overlapped
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8 Francisco J. Rodriguez-Serrano et al.

time–frequency point.Therefore, the overlapped time–frequency
zones

{
f ′, t ′, j ′

}
for instrument j ′ are those time–frequency

points that fulfill the following restriction

10 log10

⎛
⎜⎜⎜⎜⎝

|X̂ j ′(t, f )|2
J∑

j=1, j �= j ′
|X̂2

j (t, f )|2

⎞
⎟⎟⎟⎟⎠ < 10 dB.

This estimation is made for all instruments.
Once non-overlapped time–frequency zones for all instru-

ments are estimated, model adaptation can be performed. At
the training stage h j ( f ) and vi,m, j are updated with informa-
tion from the whole time and frequency axis. Now updating
equations (Equation 9 and Equation 10) are computed in dif-
ferent time–frequency zones for each instrument. For instru-
ment j ′, signal input X (t, f ) and reconstructed signal X̂( f, t)
are set to zero for the overlapped time–frequency regions{

f ′, t ′, j ′
}
. In this way, the instrument models are updated

without including the information of overlapped partials. All
this computation is summarized in Algorithm 3.

Algorithm 3 Offline separation algorithm with instrument
model adaptation
1 Compute X (t, f ) from a the audio mixture to separation.
2 Initialize gn, j (t) with the score-provided information.
3 Initialize h j ( f ), vi,m, j and wi,n, j to the trained instrument

models parameters from Algorithm 1.
4 Identify the overlapped time–frequency regions

{
f ′, t ′, j ′

}
that

satisfy
|X̂2

j ′ (t, f )|2
J∑

j=1, j �= j ′
|X̂2

j (t, f )|2
< 10.

5 for C iterations do
6 Update gains gn, j (t) with Equation 8.
7 Update the filters h j ( f ) and the excitation basis vectors vi,m, j

with Equation 9 and Equation 10 only using non-overlapped
time–frequency regions for each instrument (through setting
X ( f, t) and X̂( f, t) to zero in overlapped regions).

8 Compute spectral basis functions bn, j ( f ) for each instrument
j using Equation 5.

9 end for

Algorithm 3 iteratively updates instrument models during
signal factorization to adapt the models to the instruments
played in the mixture. This leads to improved separation
results, compared to fixed instrument models, as will be shown
in Section 4.4. However, this algorithm requires access to the
entire signal and cannot be performed in real-time scenarios.
In the next section, we will modify the algorithm to make it
work in an online fashion.

3.4 Make the adaptation online

The separation process is considered online when, at each
frame, the separated sources can be estimated from only the
current and previous frames. Consequently, the instrument
models used for each frame factorization should be obtained

only with the information from the first frame up to the cur-
rent one. Because of that, instrument models for the initial
frame must be the ones derived in a prior training phase
(see Section 3.1). As time moves forward, instrument models
should be updated with current and previous observations, so
the factorization of the new frames can be computed with an
improved version of instrument models. Since this approach
does not incorporate information from the future, the separa-
tion results should be degraded in comparison with the offline
approach.

If we access all the previous frames to update the instrument
model in the current frame, then the computational complexity
will increase over time. We propose to update instrument mod-
els only with the spectral information from t−Tupdate to t−1
frames. With this approach we maintain the computational
cost constant with time. In addition, we only make the update
once every Tupdate frames. Here, updating windows of one
second are considered for updating the models (Tupdate = 1 s).
As in Section 3.3, the overlapped time–frequency regions
for each instrument are estimated in order to avoid partials
with interference from other sound sources. This process is
summarized in Algorithm 4.

In the proposed online system, both the alignment and the
factorization stages are computed without any future infor-
mation, so the system generates the output of a frame t after
receiving it. We have used C = 50 for the number of iterations.
This value was selected as reasonable from a pilot study.

This online algorithm has a very low algorithmic latency
(half of a frame). This means that it does not use information
from the future, it uses only past information. The system has
two stages, the alignment process and the separation stage.
In Duan and Pardo (2011), it is shown that the computational
complexity of the alignment stage takes O(R + K ), where R
is the number of particles (on the order of 1000) and K is the
number of spectral peaks (on the order of 100). The separation
stage takes O(J F), where J represents the instruments (on
the order of 10) and F represents the frequency values (on the
order of 1000).

If the system were implemented efficiently on a suitable
platform, the algorithm has the capacity to work in real-time.
It is important to assess how far our current implementation
is from real-time computation. In our experiments, the pro-
posed online system is implemented in Matlab on a quad-core
3.2 GHz CPU under Linux. It runs about 7.5 times slower than
real time.

3.5 From the estimated gains to the separated signals

3.5.1 Ideal Wiener masks

In this paper, the sources s j (t), j = 1...J that compose the
mixed signal x(t) are linearly mixed, so x(t) = ∑J

j=1 s j (t).
If the power spectral density of source j at TF bin ( f, t) is
denoted as |X j (t, f )|2, j = 1...J , then, each ideally separated
source s j (t) can be estimated from the mixture x(t) using a
generalized time–frequency Wiener filter over the Short-Time
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Online Score-Informed Source Separation with Adaptive Instrument Models 9

Fourier Transform (STFT) domain as in Fevotte, Bertin, and
Durrieu (2009), and Fritsch and Plumbley (2013). The Wiener
filter α j ′ of source j ′ represents the relative energy contribu-
tion of each source with respect to the energy of the mixed
signal x(t). The Wiener filter α j ′ for each time–frequency bin
(t, f ) is defined as,

α j ′(t, f ) = |X j ′(t, f )|2∑
j |X j (t, f )|2 , (13)

where the estimation of magnitude spectrogram per instru-
ment X j ′(t, f ) is computed following Equation 12. The sum
of all the estimated sources power spectrograms |X̂ j ′(t, f )|2
are the power spectrogram of the mixed signal |X ( f, t)|2.
Then, to obtain the estimated source magnitude spectrogram
X̂ j ′(t, f ) Equation 14 is used.

X̂ j ′(t, f ) =
√

α j ′(t, f ) · X (t, f ). (14)

Finally, the estimated source ŝ j ′(t) is computed by the in-
verse overlap-add STFT of the estimated magnitude spec-
trogram X̂ j ′(t, f ) with the phase spectrogram of the input
mixture.

3.5.2 Separated signal decomposition

Once the gains are estimated with any of the proposed meth-
ods, the estimated signal recomposition is always the same.
First of all, the estimated source magnitude spectrogram
X̂ j (t, f ) is computed as:

X̂ j (t, f ) = gn, j (t)bn, j ( f ). (15)

Then, Wiener masks are estimated using Equation 13. These
estimated Wiener masks are applied to the mixed signal spec-
trogram X ( f, t) following Equation 14. Finally, the estimated
source spectrogram X̂ j ( f, t) is obtained and the estimated
source ŝ j (t) is computed by the inverse overlap-add STFT
over X̂ j ( f, t).

4. Experiments

4.1 Training and testing data

At the training stage (see Section 3.1), the spectral basis func-
tions are estimated using the RWC musical instrument sound
database (Goto, 2004; Goto et al., 2002). Four instruments are
studied in the experiments (violin, clarinet, tenor saxophone
and bassoon). The training data included isolated notes for
each instrument, recorded at each semitone throughout the
entire pitch range of the instrument. The spectral basis func-
tions for each instrument are estimated from all the note record-
ings. Files from the RWC database have different playing
styles. Files with a normal playing style and mezzo dynamic
level are selected, as in prior literature. Training with dif-
ferent playing styles leads to different models. However, as
demonstrated in Carabias-Orti et al. (2011), the selected con-
figuration (normal playing style and mezzo dynamic level) is
representative for the different models.

The database proposed in Duan and Pardo (2011) is used
for the testing stage. This database consists of 10 J.S. Bach
four-part chorales with the corresponding aligned MIDI data.
The audio files are approximately 30 s long and are sampled at
44.1 kHz from real performances. Each music excerpt consists
of an instrumental quartet (violin, clarinet, tenor saxophone
and bassoon), and each instrument is given in an isolated
track. Individual tracks from the each chorale were mixed
to create 60 duets, 40 trios, and 10 quartets, totalling 110
polyphonic music audio performances. The scores were MIDI
downloaded from the internet1. The ground-truth alignment
between MIDI and audio was interpolated from annotated beat
times of the audio. The annotated beats were verified by a
musician through playing back the audio together with these
beats as explained in Duan and Pardo (2011).

4.2 Experimental set-up

4.2.1 Time-frequency representation

Many NMF-based signal processing applications adopt fre-
quency logarithmic discretization. For example, uniformly
spaced subbands on the Equivalent Rectangular Bandwidth
(ERB) scale are assumed in Bertin, Badeau andVincent (2010),
and Vincent and Ono (2010). When using instrument models
with harmonic restrictions, the reconstructed signal is com-
puted with a term derived from the window transform G( f −
m f0) translated to the pitch-dependent frequency m f0. This
term appears in Equation 5 when the MEI model is used. In this
scenario, a frequency resolution related to the pitch resolution
is recommended to facilitate signal computation.Additionally,
the training database and the ground-truth score information
are composed of notes that are separated by one semitone in
pitch. Here, we use a frequency resolution of 1/8 of a semitone.
In this work, we implement a time–frequency representation
by integrating the STFT bins corresponding to the same 1/8
semitone interval. When computing the separation Wiener
masks, the same mask value is applied to all the frequency
bins belonging to the same 1/8 of semitone interval.

4.2.2 Model parameters

The frame size and the hop size for the STFT are set to 128
and 32 ms respectively. Also, C = 50 iterations for the NMF-
based algorithms is used.

The MEI model is computed with the following parameters:
(1) 20 harmonics per spectral basis function for the harmonic
constraint models (M = 20); (2) I = 2 excitation basis
vectors; and (3) J = 4 instruments, the same as in the test
database.

In relation to the pitch resolution, in the training stage a pitch
resolution of a semitone (the same as the training database)
is used. In the separation stage, the learned basis functions
bn, j ( f ) are adapted to a 1/8 semitone resolution in pitch

1http://www.jsbchorales.net/index.shtml
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10 Francisco J. Rodriguez-Serrano et al.

Fig. 1. Performance of a polyphony level 2 separation with different
values of β. Higher SDR values are better.

by replicating the function for each semitone 8 times. Real
instruments produce pitches not only at idealized semitones,
due to pitch variations such as vibrato. With a 1/8 semitone
resolution in pitch, we can better capture the pitch variation
of real instruments.

The use of the β-divergence distortion in the NMF frame-
work lets us set the parameter β to the value that obtains
the best results. To find the optimum value of this parameter,
we performed source separation over 60 duets (all the duets
from the Bach chorales database), varying the value of β in
the range [0, 2] with a step size of 0.1. We repeated this 10
times for each value of β. Figure 1 shows that the optimal
value of β is around β = 1.5. A paired t-test showed a
statistically significant difference (p < 10−3) for β values
under 1.1 and above 1.7 with respect β = 1.5. However, no
statistically significant differences are found in the interval of
β = [1.2, 1.6]. Therefore, we used β = 1.5 for the remainder
of our experiments. These results are similar to the ones from
Fitzgerald, Cranitch and Coyle (2008). Despite the fact that
different test databases have been used, the ranges of β with
better SDR values are similar. In Fitzgerald et al. (2008), this
range is set between 0.8 and 1.4.

Although lower values of β have been proven to be very
suitable in other signal processing applications (Bertin et al.,
2010; Fevotte et al., 2009), here the performance is very poor.
The reason for this is related to the harmonicity constraint
imposed here. The musical instruments are not perfectly har-
monic and they generate low energy values outside the neigh-
bourhood of the harmonics that cannot be modelled with the
used spectral basis functions. The same occurs for the back-
ground noise present in the signal. Low energy values and
background noise do not modify the distortion measure when
using high values of β because they more heavily rely on
the largest values, but in the case of β values close to 0,
these differences primarily are represented at the divergence
measure because of the scale invariance in the case of β = 0
(Carabias-Orti et al., 2011).

4.2.3 Audio separation metrics

For an objective evaluation of the source separation perfor-
mance of the proposed method, we use the metrics imple-
mented in Vincent, Gribonval and Fevotte (2006) (BSS EVAL
Toolbox 2.1). These metrics are commonly accepted by the
research community in source separation, and therefore facil-
itate a fair evaluation of the method. Each separated signal is
assumed to produce a distortion model that can be expressed
as follows,

ŝ j (t)− s j (t) = etarget
j (t)+ einter f

j (t)+ earti f
j (t), (16)

where ŝ j is the estimated source signal for instrument j , s j

is the original signal of the instrument j , etarget is the error
term associated with the target distortion component, einter f

is the error term due to interference of the other sources and
earti f is the error term attributed to the numerical artifacts
of the separation algorithm. The metrics for each separated
signal are the Source to Distortion Ratio (SDR), the Source
to Interference Ratio (SIR), and the Source to Artifacts Ratio
(SAR).

4.3 Algorithms for comparison

We compare different configurations of the proposed method
and a baseline score-informed source separation method pro-
posed in Duan and Pardo (2011), denoted as Soundprism. It
separates sources using harmonic masking where the energy
of overlapping harmonics are distributed according to the
harmonic indices of the sources. It is an online algorithm but
no instrument models are used.

The proposed method has three configurations. Proposed
fixed denotes the online version of the proposed method us-
ing fixed instrument models (Section 3.2). Proposed adaptive
offline denotes the offline version of the proposed method
with adaptive instrument models (Section 3.3), and Proposed
adaptive online denotes its online version (Section 3.4).

We also compare with Oracle, the theoretically best source
separation method based on time–frequency masking methods
and the analysis filter bank used on the proposed separation
system. Its calculation requires the isolated sound sources.
The mixed signals are filtered with the analysis filter bank of
1/8 of semitone frequency resolution. After that, the isolated
sources, that are also filtered by the analysis filter bank, are
used to obtain the ideal Wienner masks, which are the best
mask that can be obtained with the given frequency resolution.
Then, these masks are applied to the mixed signal and the
oracle separated signal are obtained. This process gives the
best possible separation with the system set-up. It sets an upper
bound of all the configurations of the proposed method.

4.4 Results

4.4.1 Working with ground-truth pitches

The proposed source separation method is intended to work in
the score-informed scenarios. However, errors in the
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Fig. 2. Source separation results on the 60 duets using ground-truth
pitch information. Each bar shows the average of 120 measurements
on the 120 separated tracks. The vertical line around the top of each
bar shows the plus and minus standard deviation. The five methods
are (1) Soundprism, (2) Proposed fixed (Section 3.2), (3) Proposed
adaptive offline (Section 3.3), (4) Proposed adaptive online (Section
3.4), and (5) Oracle, labelled above the bars. Higher values are better.

audio-score alignment stage may also affect source separation.
In order to separate out this effect and focus on the separation
algorithms, we first test the proposed method with ground-
truth pitches. The ground-truth pitches were obtained by run-
ning YIN (de Cheveigné & Kawahara, 2002) on the isolated
source signals before mixing, followed by necessary manual
corrections.

Figure 2 shows the comparison results on the 60 duets.
We can see all methods including the Oracle (Bar 5) show
a pretty large standard deviation. This is due to the varia-
tions of difficulty in separating different musical instruments.
Compared to the baseline Soundprism method (Bar 1), the
proposed method of all three configurations (Bars 2, 3 and 4)
improves significantly on SDR and SIR. A one-sided paired
t-test is performed to evaluate the significance. Results show
that the improvements are all statistically significant (p <

10−6), compared to the baseline Soundprism. In terms of
SAR, the proposed method with fixed instrument models (Bar
2) is not statistically better than Soundprism (Bar 1), but
the proposed method with adaptive instrument models (Bar
3) is statistically significantly better than Soundprism (Bar
1). In fact, the introduction of adaptive instrument models
(Bar 3) improves all three metrics, compared to using fixed
instrument models (Bar 2). This improvement is statistically
significant (p < 10−5). The online algorithm with adaptive
instrument models (Bar 4) has slightly worse performance
on all three metrics than its offline version (Bar 3), but it is
still significantly better than the offline algorithm using fixed
instrument models (Bar 2) and the online algorithm without
instrument models (i.e. Soundprism, Bar 1). Compared to
Oracle results (Bar 5), we can see the proposed online adaptive
algorithm (Bar 4) achieves about 2.5 dB lower SDR, which
leaves room for the algorithm to improve.

Fig. 3. Source separation results versus polyphony, calculated using
the ground-truth pitch information. Each bar is the average of 120
measurements for duets and triples, and of 40 measures for quartets,
where one measurement is calculated for each separated track.
The vertical line around the top of each bar shows the plus and
minus standard deviation. The five methods are (1) Soundprism, (2)
Proposed fixed (Section 3.2), (3) Proposed adaptive offline (Section
3.3), (4) Proposed adaptive online (Section 3.4), and (5) Oracle,
labelled above the bars. Higher values are better.

Figure 3 shows the comparison results on recordings of
different polyphonies. Only SDR is shown, as the trends for
SIR and SAR are similar. With increasing polyphony, the
performance of all methods, including the Oracle, decreases
significantly. Similar to the results for duets in Figure 2, all
three configurations (Bars 2, 3 and 4) of the proposed method
improve on Soundprism (Bar 1). This improvement is statis-
tically significant, as confirmed by a one-sided paired t-test
(p < 10−4). In addition, the improvement from fixed instru-
ment models (Bar 2) to adaptive instrument models (Bars 3
and 4) is also statistically significant (p < 10−8).

4.4.2 Working with audio-score alignment

In this section, we compare source separation methods taking
audio-score alignment results (i.e. the score pitches) as inputs.
This evaluates the proposed method in realistic situations.
Figure 4 shows the results on duets. Similar to Figure 2, the
proposed method using adaptive instrument models (Bar 3
and 4) significantly outperforms Soundprism (Bar 1) in SDR
and SIR, which is confirmed by an one-sided paired t-test
(p < 10−3). The proposed method using fixed instrument
models (Bar 2) significantly outperforms Soundprism (Bar
1) in SIR (p = 4.1 × 10−5), but not in SDR (p = 0.16).
This again shows the benefit of using (adaptive) instrument
models for source separation. The improvement from using
fixed instrument models (Bar 2) to adaptive instrument models
(Bar 3 and 4) is again statistically significant on all three met-
rics (p < 10−4), for both offline and online algorithms, even
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Fig. 4. Source separation results on the 60 duets using the aligned
musical score information. Each bar shows the average of 120
measurements on the 120 separated tracks. The vertical line around
the top of each bar shows the plus and minus standard deviation. The
five methods are (1) Soundprism, (2) Proposed fixed (Section 3.2),
(3) Proposed adaptive offline (Section 3.3), (4) Proposed adaptive
online (Section 3.4), and (5) Oracle, labelled above the bars.

though the online algorithm (Bar 4) drops the performance a
little from its offline version (Bar 3).

Figure 5 further shows the results on recordings of differ-
ent polyphonies. Similar to Figure 3, only SDR values are
shown as the trends for SIR and SAR are similar. Again,
the proposed method with all three configurations (Bars 2,
3 and 4) significantly outperforms Soundprism (Bar 1) for all
polyphonies, which is confirmed by a one-sided paired t-test
(p < 10−4), with the exception of duets. The improvement
from fixed instrument models (Bar 2) to adaptive models (Bar
3 and 4) is also statistically significant for all polyphonies (p <

10−5). These results shows the advantage of using (adaptive)
instrument models over not using instrument models in score-
informed source separation, and also shows that the proposed
online algorithm is able to retain this advantage.

Compared with the results using ground-truth pitch infor-
mation in Figure 3, there are two additional interesting
observations. First, the average SDR of all methods in Figure 5
except Oracle decreases and the standard deviation increases.
This is because of the audio-score alignment errors. Second,
with the increase of polyphony, the degradations are less sig-
nificant for almost all methods. This can be explained by the
performance of the audio-score alignment. On this dataset, the
alignment was better on pieces with higher polyphony (Duan
& Pardo, 2011).

5. Conclusions and discussions

In this work, a score-informed source separation model is
proposed. It uses instrument models that describe the spec-
tral behaviour of each instrument. Different configurations
have been tested and compared to a state-of-the-art method
(Soundprism) as baseline and the Oracle separation.

Fig. 5. Source separation results versus polyphony, calculated
using the alignment information. Each bar is the average of 120
measurements for duets and triples, and of 40 measures for quartets,
where one measurement is calculated for each separated track.
The vertical line around the top of each bar shows the plus and
minus standard deviation. The five methods are (1) Soundprism, (2)
Proposed fixed (Section 3.2), (3) Proposed adaptive offline (Section
3.3), (4) Proposed adaptive online (Section 3.4), and (5) Oracle,
labelled above the bars.

Unlike existing systems, our system uses parametrized
instrument models learned from non-synthetic performances.
The models are adapted to the real instrument from the input
signal while computing the separation. This adaptation is done
by considering only the non-overlapped partials. Information
about which partials overlap is obtained from a performance-
aligned score. Since one version of our source separation with
adaptive instrument models can be performed without any
future information, it can be considered an online algorithm.

The system has been tested over a state-of-the-art musical
database and compared with a state-of-the-art system that
does not use instrument models. The experiments show that
the use of instrument models improves the separation results.
Furthermore, the separation performance with adaptive instru-
ment models is better than that with fixed models. The online
algorithm results are nearly as good as the offline ones and the
same occurs when using online alignment information. The
difference between online and offline performance is reduced
as the polyphony grows because of the better performance of
the alignment stage as polyphony increases.

Despite using only one basis function per note in the MEI
model, the experimental section of this work shows that it
achieves promising results when separating musical perfor-
mances with a moderate dynamic variation. If a wide dynamic
variation were presented, more than one basis function would
be needed for representing each note. Some instruments have
a particular spectral shape when the amplitude level changes.
For instance, the clarinet spectral shape relies on non-linear
mechanisms. That is why its spectrum depends upon the gain.
Here, it is supposed that most of the time, the instrument
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amplitude levels are in a medium range, so that the spec-
tral shape is stable. For future work, it could be interesting
to model the dependence of spectral shape on amplitude as
has been performed in Dannenberg and Derenyi (1998), Hu
(2004), and Horner and Beauchamp (2008).

In this work, the instrument models are updated with non-
overlapped partials, while the overlapped partials are only
modulated by the separation masks. In future work, a mixed
separation framework can be developed which separates the
non-overlapped partials with the mask procedure and the over-
lapped ones with sound synthesis in the time domain after
estimating both amplitude and phase parameters.
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