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A B S T R A C T

Commercial speaker verification systems are an important component in security services for various domains,
such as law enforcement, government, and finance. These systems are sensitive to noise present in the input
signal, which leads to inaccurate verification results and hence security breaches. Traditional speech enhance-
ment (SE) methods have been employed to improve the performance of speaker verification systems. However,
to the best of our knowledge, the impact of state-of-the-art speech enhancement techniques has not been ana-
lyzed for text-independent automatic speaker verification (ASV) systems using real-world utterances. In this
work, our contribution is twofold. First, we propose two deep neural network (DNN) architectures for SE, and we
compare the performance of the proposed networks with the existing work. We evaluate the resulting SE net-
works using the objective measures of perceptual evaluation of speech quality (PESQ) and short-time objective
intelligibility (STOI). Second, we analyze the performance of ASV systems when SE methods are used as front-
end processing to remove the non-stationary background noise. We compare the resulting equal error rate (EER)
using our DNN based SE approaches, as well as existing SE approaches, with real customer data and the freely
available RedDots dataset. Our results show that our DNN based SE approaches provide benefits for speaker
verification performance.

1. Introduction

Automatic speaker verification (ASV) systems are vital for security
applications in areas such as financial services, law enforcement, and
government security. A security breach occurs when an ASV system
makes a false authorization for an imposter, which may lead to eco-
nomic, personal or national security consequences. Noise, reverberation
and channel distortion are factors that significantly impair the perfor-
mance of ASV systems and make the ASV system particularly vulnerable
to imposter attacks or missed verification.

Therefore, speech enhancement (SE), which aims to reduce noise
in the speech signal, is an important pre-processing module in
commercial ASV systems. These systems in general use traditional SE
techniques (Boll, 1979; Ephraim and Malah, 1984; 1985), which
have been shown to be effective against stationary noise. However,
as most noise types encountered in real-world applications are
non-stationary, traditional SE techniques do not perform well in
these cases.

Deep neural networks (DNNs) have been successfully applied to SE
systems to model non-stationary noise (Lu et al., 2012; 2013; 2014; Xu
et al., 2014b; 2014a; 2014c; 2015; Huang et al., 2015; Chen et al.,

2016; Weninger et al., 2015). However, these techniques have typically
been tested in laboratory settings using an artificially created speech
corpus (e.g., TIMIT Acoustic-Phonetic Continuous Speech Corpus sen-
tences Garofolo et al., 1993), where the utterances are spoken in a very
different way, i.e., not natural, compared to real-world speech utter-
ances. To be able to assess the feasibility of SE systems in commercial
applications, these methods need to be evaluated with real-world
utterances in addition to artificial tests.

In this work, we propose two DNN-based speech enhancement ap-
proaches. We apply them as a front-end noise removal module for a
state-of-the-art speaker verification system and test the combined
systems. In addition to evaluating the proposed systems using
utterances collected and mixed in laboratory settings, we also use
utterances that are collected by a commercial ASV system from real
customers, as well as the freely available Reddots dataset to
evaluate the proposed systems. We show that both systems yield su-
perior results compared to traditional methods, in terms of both ob-
jective speech quality and intelligibility measures and speaker ver-
ification performance.
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2. Related work

In this section, we review existing work on speech enhancement and
its application to speaker verification systems.

2.1. Speech enhancement: Classical methods

Early notable works on speech enhancement modeled the noise
statistically, typically using the first 4–5 frames of the noisy speech
signal, assuming those are noise only. These methods, such as spectral
subtraction (SS) (Boll, 1979), minimum mean square error spectral
amplitude estimator (MMSE) (Ephraim and Malah, 1984) and
minimum mean square error log-spectral amplitude estimator (Log-
MMSE) (Ephraim and Malah, 1985), produce disturbing musical arti-
facts, which are portions of spectral power appearing in random fre-
quency regions, in the predicted signal. Since these techniques use the
first frames to model the noise, they are not effective against time-
varying noises.

2.2. Speech enhancement: Deep learning methods

In recent years, DNN based methods have been shown to sig-
nificantly outperform classical methods. Various deep models have
been proposed, but generally they can be classified into two categories:
regression-based and masking-based.

Regression-based methods attempt to learn the mapping from noisy
speech to clean speech directly. Lu et al. (2012) trained a deep auto-
encoder (DAE) on Mel-scale power spectral patches of clean speech and
used this to denoise noisy speech. Later, they extended the model by
training the DAE with noisy-clean speech pairs (Lu et al., 2013) and by
introducing ensemble models (Lu et al., 2014).

Similarly, Xu et al. (2014b, 2014a, 2014c, 2015) used restricted
Boltzmann machines (RBMs) to learn a mapping function from the log
power spectra of noisy speech to those of clean speech. They extended
this work by adding a statistical estimate of the noise from the first
several frames to the network’s input to achieve noise-aware training
(Xu et al., 2014a). In (Xu et al., 2014c), they further extended this work
by introducing global variance equalization to tackle the over-
smoothing issue that causes the removal of speech segments in the
predicted speech, which leads to muffled speech.

Park and Lee (2016) proposed a redundant convolutional encoder-
decoder (R-CED) network, which is a fully convolutional network, for
mapping the noisy STFT magnitude to clean STFT magnitude. They
applied 1D convolution along the frequency axis. The input to the
network is eight frames including the current and the past seven frames,
where the output is the current frame’s clean version.

Masking-based methods, on the other hand, attempt to predict the
time-frequency (T-F) filters or masks that are later applied to noisy
speech spectra to recover the corresponding clean speech spectra.
Methods in this category have shown significant improvements over
regression-based methods (Li and Wang, 2009; Erdogan et al., 2015;
Narayanan and Wang, 2013; Huang et al., 2015; Wang et al., 2014;
Williamson et al., 2016). Various types of masks have been proposed.
Binary masks such as the ideal binary mask (IBM) (Srinivasan et al.,
2006; Li and Wang, 2009) and the target binary mask (TBM)
(Kjems et al., 2009) set the mask value at a T-F unit to 1 when speech
dominates and to 0 when noise dominates. Soft masks such as the ideal
ratio mask (IRM) (Erdogan et al., 2015) and the Wiener-like mask
(Srinivasan et al., 2006; Narayanan and Wang, 2013; Erdogan et al.,
2015) use a real value between 0 and 1 to reflect the relative dominance
of speech in each T-F unit. An extension to soft masks is a complex soft
mask such as the complex ideal ratio mask (Williamson et al., 2016).
This mask uses complex numbers and is applied to the complex spectra
of the noisy speech. Wang et al. (2014) investigated some of the above-
mentioned masks in a supervised simultaneous speech separation
system.

Different types of DNNs have been proposed to predict these masks
from noisy speech for SE. Chen et al. (2016) trained a feed-forward
DNN to predict the IRM from 64-band cochleagrams of the noisy
speech. The network was trained with 10,000 different types of noise to
increase the robustness against unseen noises. Weninger et al. (2015)
used a long short-term memory (LSTM) network to predict phase sen-
sitive masks, and tested the use of this speech enhancement system on
the performance of a speech recognition system. Huang et al. (2015)
proposed a recurrent neural network to jointly output the clean speech,
noise, and the IRM. The training objective function considers both the
interference reduction and mask prediction.

2.3. Automatic speaker verification

The Gaussian mixture model (GMM) - universal background model
(UBM) ASV system described in (Reynolds et al., 2000; Bimbot et al.,
2004) utilizes GMMs to model the acoustic space, which is para-
metrized by the selected acoustic features. A GMM with a typically
large number of mixtures is trained using a large pool of speakers. This
model is usually called the UBM.

Dehak et al. (2011) proposed a total variability space that represents
the speaker and channel variability. The speaker’s supervector can be
represented in the total variability space by the following equation,

= +s m Tw, (1)

where s is the speaker’s supervector, m is the mean supervector of the
GMM-UBM, T is the total variability matrix, and w is the latent variable
where the maximum a posteriori (MAP) point estimate of w given the
utterance is ϕ, which is called the identity vector (i-vector). For the
process of training the T matrix and extracting the i-vectors, please see
(Kenny et al., 2005) and (Dehak et al., 2011), respectively.

Probabilistic linear discriminant analysis (PLDA) assumes that the i-
vector ϕ can be represented by the following equation,

= + + +ϕ μ Fh Gv ϵ ,l r l l r l r, , , (2)

where F and G matrices represent the speaker and channel subspace, l
and r represent the speaker and session indexes, hl and vl, r represent the
speaker- and session-specific vectors, μ represents the mean i-vector and

N∼ϵ (0, Σ)l r, represents the residual noise. The PLDA parameters
=θ μ F G{ , , , Σ}PLDA can be estimated by expectation maximization

(EM). The probabilistic form of Eq. (3) is as follows

N= + +p ϕ ϕ μ FF GG( ) ( , Σ).l r l r
T T

, , (3)

For detailed information on how to estimate PLDA parameters with
EM, how to calculate multi-session PLDA scoring and how to apply
length normalization, please refer to (Prince and Elder, 2007; Jiang
et al., 2012), (Lee et al., 2013) and (Garcia-Romero and Espy-
Wilson, 2011), respectively.

2.4. SE application to ASV systems

Godin et al. (2013) evaluated speaker identification (SID) methods
and SID performance improvements using the early (classical) speech
enhancement techniques described in Section 2.1 (Boll, 1979; Ephraim
and Malah, 1984; 1985) to see if SE is useful in real noisy telephone
conversations. They compared the equal error rate (EER) values be-
tween artificially generated noisy speech (i.e., adding noise to clean
speech) and natural noisy speech, and found that they do not correlate
well.

In recent years, deep-learning based speech enhancement methods
have also been integrated into ASV and SID systems. Zhao et al. (2011,
2014) proposed a robust SID system under noisy and reverberant con-
ditions where the IBM prediction was adopted for speech enhancement.
They integrated SE and SID systems at the feature level.

Kolbœk et al. (2016) proposed an LSTM-based SE front end for a
text-dependent i-vector-based ASV system. This SE network includes
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two LSTM layers and a fully connected layer. For each audio frame
(32 ms window with 16 ms hop size), the input to their network is a
concatenation of the magnitude spectra of the current frame and its
previous 15 and future 15 frames, totaling 31 frames of data. The
output of the network is the T-F mask of the current frame. They trained
and evaluated their system using six types of non-stationary noises and
compared their results with classical SE methods. They showed that
their method outperforms classical methods in an SNR range from -5 dB
to 10 dB.

Although this was a good evaluation of SE systems as a denoising
front-end, this evaluation had two limitations. First, all noise types that
were used for evaluation were used for training; a more thorough
analysis using unseen noise types would be required. Second, all noisy
speech utterances were created by artificially mixing clean speech
utterances with noise; while this made it possible to create noisy speech
with different SNRs, an additional evaluation with natural noisy speech
would be required to show the SE front end’s performance with com-
mercial ASV systems in real-world scenarios.

To the best of our knowledge, there has not been a thorough ana-
lysis of state-of-the-art speech enhancement approaches working with
commercial text-independent ASV systems in real-world scenarios. As
in Kolbœk et al. (2016), we treat the ASV system as a black box: we
enhance the noisy speech and then feed it to the ASV system for speaker
verification. In our experiments, we use natural noisy speech samples
that were collected by Voice Biometrics Group (VBG) and utterances
from the RedDots dataset and evaluate the verification error rate on
these enhanced utterances. In addition, we conduct artificial tests by
mixing additional noise to natural noisy speech utterances with dif-
ferent SNRs and evaluate the verification error rate.

3. Network architecture

In this section, we propose two neural network architectures for
speech enhancement as the front end of our ASV systems.

3.1. Bidirectional LSTM network

The first architecture we propose has a total of five layers including
the input layer, as shown in Fig. 1. Each hidden BLSTM layer contains
1024 units. The input layer receives a sequence of L vectors, each of
which corresponds to one time frame of the input noisy speech.

Specifically, each vector is the concatenation of the log-amplitude
spectrogram of the +c2 1 neighboring frames centered around the
current frame, where c is the short-term context window parameter.
Including the neighboring frames provides subsequent layers with
contextual information. The input then goes through three Bidirectional
LSTM (BLSTM) (Hochreiter and Schmidhuber, 1997) layers that model
the temporal dependencies of the signal. The output layer consists of a
BLSTM layer to reconstruct the speech mask.

We use dropout layers with a 0.2 dropout rate between the BLSTM
hidden layers and add l2 regularization to the network weights during
the optimization to overcome overfitting and to increase robustness
against unseen noise types. The sigmoid activation function is used in
the BLSTM hidden layers.

The BLSTM network is a fully recurrent network, i.e., it only con-
tains BLSTM layers, even in the output. The main difference between
the RNN-based method in (Huang et al., 2015) and our network is that
we use BLSTM layers instead of basic recurrent layers. Compared to
general RNNs, LSTM units are better at modeling long-term temporal
dependencies of data, as it suffers less from the vanishing gradient issue
(Hochreiter and Schmidhuber, 1997). Our network directly predicts the
T-F masks rather than computing it in a deterministic layer as in (Huang
et al., 2015; Weninger et al., 2015).

3.2. Convolutional encoder-decoder network

The second network architecture that we propose here is a con-
volutional encoder-decoder (CED) network, as shown in Fig. 2. The
input layer receives a short-time Fourier transform (STFT) magnitude
spectrogram of the noisy speech. This input is then passed to four
convolutional layers with a stride length of two forming an encoder,
followed by three deconvolutional layers (Zeiler et al., 2010) with a
stride length of two forming a decoder. This encoder-decoder design
compresses and reconstructs the input, and preserves compact and
important features. Three skip connections, as denoted by red arrows in
the figure, are also added, to help preserve the fine details for better
decoding. Finally, a mask for speech is estimated at the output layer.
Each of the convolutional and deconvolutional layers also includes a
batch normalization (BN) layer and an activation layer with rectified
linear unit (ReLU), that are not shown in the figure. The numbers of
filters used in all of the convolutional and deconvolutional layers are
128, 256, 512, 1024, 512, 256, 128, and 1, respectively. Filter sizes are
7×7 for all layers, except for the output layers, where filter sizes are
3×3. We add l2 regularization to the network weights during the
optimization to overcome over-fitting and to increase robustness
against unseen noise types.

This architecture is inspired by Park and Lee (2016) and
Vincent et al. (2010). The main difference between redundant con-
volutional encoder-decoder (R-CED) proposed in (Park and Lee, 2016)
and our approach is that we model both speech and noise where R-CED
only models the speech. Another difference is that instead of using only
8 STFT frames to denoise a single frame, our network takes much more
( =L 100 in the experiments) frames and returns the same amount of
mask frames. We divide each test utterance into non-overlapping seg-
ments that are L frames long and feed each segment into the CED
network for enhancement. The rationale behind selecting this much
larger number of frames to analyze is that it leads to modeling longer-
term dependencies and yielding a better reconstruction. In addition, the
network depth is also different, R-CED contains 15 layers and is deeper
than CED, where each layer contains a convolution, BN and an acti-
vation layer, and the proposed CED has 7 layers, where each layer
contains three layers, namely a convolution/deconvolution, a BN layer
and an activation layer. The number of filters are symmetric in R-CED
blocks which are 10, 12, 14, 15, 19, 21, 23, 25, 23, 21, 19, 15, 14, 12,
10, and 1, while the number of filters in the proposed CED are fixed.

Fig. 1. Proposed BLSTM network architecture for speech enhancement. Input
vector vt is the concatenation of the normalized log-amplitude spectra of +c2 1
frames centered around the t-th time frame, where c is the short-term context
window parameter. Hidden layer outputs are denoted as h ,t

n where n is the layer
index. mt

s is the predicted mask for the speech.
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3.3. Objective function

We consider the amplitude soft mask (ASM) in our experiments.
ASM for the speech source is defined as

=
+
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f

f f
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s n
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s t

t t (4)

where st and nt are the clean speech and the noise magnitude spectra at
time t, respectively.

To train the networks, we consider two loss functions, the mean-
squared error (MSE) and binary cross-entropy (BCE). The MSE objective
function minimizes the reconstruction error of the T-F mask of the
speech source of the training data as
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where mt
s is the mask calculated from the clean speech and the noise,

and mt
s is the mask that is predicted by the network.

The ground-truth ASM speech mask, whose values range from 0 to
1, can be considered as probabilities of T-F bins belonging to the speech
source. The predicted speech mask, whose values also range from 0 to
1, thanks to the sigmoid transfer function at the output layer, can be
viewed as the predicted probabilities of T-F bins belonging to the
speech source. Therefore, BCE can be used to measure the mismatch
between the two Bernoulli distributions as
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We compare the MSE and BCE objective functions and analyze their
effects on speech enhancement performance in Section 4.3.3.

4. Experiments

We divide the experiment section into two parts. The first part
evaluates the speech quality and intelligibility of the speech enhance-
ment approaches on noisy speech utterances that are artificially mixed
from clean speech and noise. The clean utterances are not naturally
encountered by commercial ASV systems and the mixing process is
artificial, however, they are needed for calculating the evaluation
measures and are publicly available for results reproduction. The
second part connects the proposed approaches with a speaker ver-
ification system and evaluates their verification error rates on real-
world speech utterances.

For training, we create noisy speech sentences by mixing clean
speech utterances from the Librispeech corpus (Panayotov et al., 2015)
with 138 different types of non-stationary noise obtained from Sound
Ideas (Sound, 2018), with SNRs at −6, −3, 0, 3, 6, and 9 dB, totaling
about 80 hours of training data. The noise data includes non-stationary
noise from various environments such as nature, city, domestic, office,
traffic and industry, all of which are what commercial ASV systems may
encounter. All files are downsampled to 8 kHz to simulate the telephone
frequency range, since many commercial ASV systems use this range.
Our proposed networks described in Section 3, namely BLSTM and CED,
are trained once and used in all of the experiments described in this
section.

4.1. Comparison methods

As a comparison to our approaches, we trained the fully convolu-
tional redundant CED (R-CED) network, described in (Park and
Lee, 2016) and in Sections 2.2 and 3.2, as our convolutional baseline .

We designed another DNN-based baseline identical to our BLSTM
architecture, but instead of BLSTM layers it uses general recurrent
layers, similar to the approach in (Huang et al., 2015). The differences

are that we directly predict the masks instead of using a deterministic
layer to compute them, and we do not include signal interference terms
in the objective function as described in (Huang et al., 2015). We call
this network recurrent neural network (RNN) for simplicity.

We also compare with traditional SE methods described in
Section 2.1, namely SS and Log-MMSE methods. We use implementa-
tions provided in (Loizou, 2013).

We implement all DNN-based methods (including the proposed
ones) using Keras, a Python library for deep learning (Chollet et al.,
2015).

4.2. Speech quality and intelligibility evaluation

We mix 300 utterances of 85 unique speakers with 5 types of
noise (babble, factory, speech-shaped noise (SSN), motorcycle and ca-
feteria) at SNRs of −6, 0, 6 and 9 dB. All of the 85 speakers and
the 5 types of noise have not been used as part of the training
data. Specifically, the babble and factory noises are obtained from
Varga and Steeneken (1993), motorcycle noise is obtained from
Duan et al. (2012), the cafeteria noise is recorded by ourselves at the
University of Rochester, and the SSN noise is created by filtering white
noise with an FIR filter with frequency response that matched the long-
term spectrum of speech utterances (Nilsson et al., 1994). We provide
the mentioned test noise samples on our website.1 Fig. 3 shows an ex-
ample noisy spectrogram corrupted by motorcycle noise at 0 dB SNR
along with its corresponding clean and enhanced versions. Among the
300 utterances, 120 are from the Librispeech corpus spoken by 65
unique speakers, and 180 utterances are from the PTDB-TUG corpus
(Pirker et al., 2011) spoken by 20 unique speakers. In particular, the
inclusion of the PTDB-TUG utterances is to further test the cross-cor-
pora performance of the proposed approach. We use the perceptual
evaluation of speech quality (PESQ) (Rix et al., 2001) and short-time
objective intelligibility (STOI) (Taal et al., 2011) to evaluate our ap-
proaches. Both metrics are widely used in SE research. We do not
conduct subjective listening tests, as our primary goal in this work is to
analyze the effect of DNN-based SE systems on the performance of an
ASV system.

For pre-processing, we perform STFT with a 32 ms Hanning window
and an 8 ms hop size to obtain the log-amplitude spectrogram of the
noisy speech to be input to all networks. We set FFT size to 256 in our
experiments and we use the full frequency range of 0 to 4000 Hz. These
parameters are kept the same for all of the speech enhancement ex-
periments. We normalize the input to have zero mean and unit standard
deviation. For the BLSTM network, we set the short-term context
window parameter c to 5 frames in all experiments. Increasing this
parameter yields faster convergence, but at the cost of computational
complexity. We empirically set the time sequence length parameter L to
100 frames for both networks. Training the networks on the long input
sequences makes the networks more robust to non-stationary noise,
which varies over time.

For training, the dropout rate is set to 0.2 for the BLSTM network,
and the l2 regularization value is set to 0.000001 for both networks. The
models are trained for 100 epochs, i.e., we iterate over the training set
for 100 times. For testing, the network reconstructs the masks of both
speech and noise. We then apply the predicted speech mask to the noisy
signal’s magnitude spectrogram and then reconstruct its time-domain
signal using an inverse STFT with overlap-add from the resulting
magnitude spectrogram with the noisy speech’s phase. We trained both
networks using only the BCE objective function described in Eq. (6), as
we found that BCE consistently outperforms MSE in our system analysis
experiments in Section 4.3.3.

Figs. 4–6 show the PESQ and STOI results for the unprocessed noisy
speech and the enhanced speech using the traditional techniques of

1 http://www.ece.rochester.edu/projects/wcng/code.html.
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spectral subtraction (SS) and minimum mean square error log-spectral
amplitude estimator (Log-MMSE) as well as the DNN-based RNN, R-
CED, and the two proposed networks described in Section 3, namely
BLSTM and CED.

The results show that the proposed techniques (BLSTM and CED) are
superior than other techniques in terms of the PESQ and STOI metrics in
completely unmatched noise types and speaker scenarios. BLSTM
achieves the best improvement in terms of PESQ and STOI, while CED
achieves the second best results. SS and Log-MMSE make the STOI va-
lues worse than for the unprocessed noisy speech. We believe that this
is due to the musical artifacts introduced by the spectral subtraction
operation: the amount of subtraction is determined by the estimated
instantaneous SNR, but the estimation does not consider long-term
temporal dependencies and leads to fluctuating and inappropriate es-
timation. This issue also leads to degraded performance of the following
ASV system, as shown in Section 4.4.2.

4.3. Parameter analysis of the proposed methods

In this section, we further analyze the effects of several key para-
meters of the proposed CED and BLSTM networks, including the
number of hidden units and layers, the objective function, and the input
features. In the following experiments, we use the same settings de-
scribed in Section 4.2, i.e., the train and test speech and noise combi-
nations are the same. We report the average results of five test noise
types.

4.3.1. The number of hidden units
We analyze the effect of different numbers of hidden units in the

BLSTM network on PESQ and STOI results. We investigate a three-layer
BLSTM network with N units in each layer, where N is varied to take
values of 64, 128, 256, 512 and 1024. PESQ and STOI results are shown
in Fig. 7. The results suggest that increasing the number of hidden units
monotonically improves PESQ and STOI across all SNR conditions, yet
the improvement seems to be close to saturation when N is 1024. In-
creasing N beyond 1024 is not feasible for us due to insufficient
memory; we used an NVIDIA Tesla K80 GPU which has 12GB memory.

Next, we investigate the effect of different numbers of filters of the
CED network on PESQ and STOI results. The CED network has a sym-
metric encoder-decoder structure, and the number of filters can be
described as M, 2M, 4M, 8M, 4M, 2M, M for the hidden layers and 1
filter for the predicted speech mask. We vary M to have values of 8, 16,
32, 64 and 128 and show PESQ and STOI results in Fig. 8. Again, we can
see that increasing M generally improves PESQ and STOI across all SNR
conditions, yet the improvement is very small when M is greater than

32. Increasing M above 128 is not feasible for us due to insufficient
memory.

In practice, the trade-off between system performance and compu-
tational cost needs to be balanced. In our experiments, we chose N and
M to be 1024 and 128, respectively, to achieve the best possible PESQ
and STOI on our device.

4.3.2. The number of hidden layers
We investigate the effect of the number of layers in BLSTM and CED

networks. For the BLSTM network, we let each hidden layer contain
1024 units and vary the number of hidden layers between 1 and 3. The
PESQ and STOI results are shown in Fig. 9. We can see that increasing
the number of hidden layers improves both PESQ and STOI across all
SNR conditions. Increasing the number of layers above three is not
feasible due to insufficient memory.

The CED network has two parts, the encoder and the decoder. In
Fig. 2, there are a total of 7 layers shown. We vary this number to 3, 5
and 7 and compare their PESQ and STOI performance. The number of
filters of the hidden layers follows the same power of 2 ratio as de-
scribed in the previous subsection, and we set M to 128. Also note that
the number of skip connections also varies to be 1, 2 and 3 for networks
with 3, 5 and 7 layers, respectively. Results are shown in Fig. 10. Again,
we see that more layers leads to better PESQ and STOI performance
across all SNR conditions. However, the number of parameters also
increase dramatically, by approximately 11 times from 3 layers to 7
layers.

In our experiments, we set the number of hidden layers to 3 and 7
for the BLSTM and the CED networks, respectively, in order to achieve
the best possible PESQ and STOI on our device. Considering the hidden
layer size parameters in the previous subsection, the BLSTM and the
CED networks have 54,782,992 and 17,669,889 trainable parameters,
respectively.

4.3.3. The objective function
This section compares the mean-squared error (MSE) objective

function from Eq. (5) and the binary cross-entropy (BCE) objective
function from Eq. (6) for CED and BLSTM networks. The results are
shown in Fig. 11. We can see that the BCE objective function achieves
slight but consistent improvement over the MSE objective function on
both metrics and networks and across all SNR conditions. Therefore, we
use the BCE objective function in all the remaining experiments.

4.3.4. The input feature
Next, we compare the log-amplitude linear-frequency (log-linear)

spectrogram with the log-amplitude mel-frequency (log-mel)

Fig. 2. Proposed convolutional encoder-
decoder (CED) network architecture for
speech enhancement. The numbers of
filters in the convolution and deconvo-
lution layers are 128, 256, 512, 1024,
512, 256, and 128, respectively. The
input is an L-frame magnitude spectro-
gram, where the output are estimated L-
frame mask of speech and noise spec-
trograms. The red arrows represent the
skip connections. (For interpretation of
the references to colour in this figure
legend, the reader is referred to the web
version of this article.)
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Fig. 3. An example of speech enhancement results. Magnitude spectrograms of the noisy speech signal corrupted by motorcycle noise at 0 dB, the ground-truth clean
speech, and enhanced speech of six speech enhancement methods, namely SS, Log-MMSE, RNN, R-CED, BLSTM and CED.

Fig. 4. PESQ comparison between the proposed methods (BLSTM and CED) and baseline traditional methods (SS Boll, 1979 and Log-MMSE Ephraim and
Malah, 1985) and baseline DNN-based methods (RNN and R-CED Park and Lee, 2016) for different noise types and SNRs.
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Fig. 5. STOI comparison between the proposed methods (BLSTM and CED) and baseline traditional methods (SS Boll, 1979 and Log-MMSE Ephraim and Malah, 1985)
and baseline DNN based methods (RNN and R-CED Park and Lee, 2016) for different noise types and SNRs.

Fig. 6. PESQ and STOI comparisons averaged over all noise types.
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spectrogram as the input feature to the networks. The main difference
between these two inputs is the frequency resolution. Compared to the
linear-frequency scale, mel-frequency scale has a better correspondence
with human auditory systems. It has a higher frequency resolution at
low frequencies but a lower frequency resolution at high frequencies.
The PESQ and STOI results are shown in Fig. 12. From the results, we
can see that there is a slight difference between the two types of input.
The log-amplitude linear frequency spectrogram yields slightly better

PESQ and STOI results, therefore, we selected it as our input in other
experiments.

4.4. Application in automatic speaker verification

In this section, first we describe the ASV system used for the ex-
periments, and then we use the different speech enhancement methods
as a pre-processor for the described ASV system and compare their

Fig. 7. PESQ and STOI comparisons averaged over all noise types for different numbers of hidden units (64, 128, 256, 512 and 1024) per layer in the BLSTM network.

Fig. 8. PESQ and STOI comparisons averaged over all noise
types for different numbers of filters (M = 8, 16, 32, 64 and
128) in the first convolutional layer in the CED network. The
numbers of filters in the other convolutional and deconvolu-
tional layers are powers-of-two times of M, following the same
symmetric pattern shown in Fig. 2.

Fig. 9. PESQ and STOI comparisons averaged over all noise types for different numbers of hidden layers (1, 2 and 3) in the BLSTM network.
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effects in decreasing the verification error rate.
The i-vector approach is the state of the art in speaker verification

and is commonly used in current commercial systems. Therefore, we
evaluate our SE system on an i-vector-based text-independent ASV
system with probabilistic linear discriminant analysis (PLDA) scoring,
which is implemented based on Larcher et al. (2016), an open source
Python library for speaker and language recognition. We choose this
open-source ASV implementation for result reproduction purposes. For
all ASV experiments, we use 13 Mel Frequency Cepstrum Coefficients
(MFCCs) with their delta and double-delta features, resulting in a 39-
dimension vector. The rank of the T matrix, and therefore the dimen-
sion of the i-vectors, is set to 100. We found that using low dimensional
i-vectors provide better EER results when the utterances are short in
duration. We apply length normalization described in (Garcia-
Romero and Espy-Wilson, 2011). The dimensionalities of the subspaces
F and G in PLDA training are set to 100×50 and 100, respectively.

We use the widely used metric, equal error rate (EER), to evaluate
the ASV performance. EER is defined as the intersection point where
false rejection rate and false acceptance rate are equal. Lower EER
means better ASV performance.

4.4.1. Datasets
We run our experiments on two datasets: VBG RANDNUM and

RedDots. All of the utterances in both datasets are sampled at 8 kHz, and
are natural noisy utterances with a high SNR.

VBG RANDNUM is a dataset from the Voice Biometrics Group
(VBG)’s production system. It contains 1300 English utterances from
100 speakers, where each speaker has 3 enrollment utterances, and 10
verification utterances. Please note that in our experiments we use
multi-session scoring described in (Lee et al., 2013). Each utterance
contains four random digits and its average length is 6.3 s. We esti-
mated the SNR of VBG RANDNUM samples using the tool described in
(Vondrasek and Pollk, 2005) with a window size of 8 ms and 50%
overlap, and show the SNR distribution in Fig. 13. We use the enroll-
ment and verification samples of 50 speakers to train the ASV system,
namely, the UBM, T matrix and PLDA parameters. These samples al-
ready contain natural noise, but we also added artificial noise between
10–25 dB SNR level to 100 randomly chosen samples to obtain a multi-
condition training set. We use the remaining 50 speakers for evaluation,
where there are in total 50 (target speakers) × 10 (verification
utterances) × 50 (potential speakers) = 25,000 trials in the evalua-
tion. Since this dataset contains constrained speech, we follow the
general guidelines described in (Bimbot et al., 2004) and keep the
number of components used for the UBM small (128 components).
Some examples from the VBG RANDNUM corpus and their enhanced
versions are available for the research community.2

This VBG RANDNUM dataset is representative of VBG’s
RandomPIN™offering, which is currently deployed (commercially) in 8

Fig. 10. PESQ and STOI comparisons averaged over all noise types for different numbers of layers (3, 5 and 7) in the CED network.

Fig. 11. PESQ and STOI comparisons averaged over all noise types for mean-squared error (MSE) and binary cross-entropy (BCE) loss functions in BLSTM and CED
networks.

2 Free download at http://www.ece.rochester.edu/projects/wcng/code.html.
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countries, using 36 different languages. VBG is currently processing
over 6 million RandomPIN™verification requests annually, and this
number is growing rapidly.

To build voice-prints for RandomPIN™, users are prompted to repeat
a series of six separate static numeric digit phrases, each five digits
long. Note that each RandomPIN™user is prompted with these same
enrollment phrases. To verify the speaker, the VBG system generates a
random 4- or 5-digit phrase for the user to repeat.

VBG uses text-independent technology to perform speaker ver-
ification. As a pre-processor, VBG uses automatic speech recognition to
make sure all content is spoken as requested. A variety of audio quality
assessment tests are also performed to ensure the audio is of sufficient
quality to perform biometric voice processing. Should samples fail
content or quality pre-checks as part of a verification request, the
system will automatically generate a new random PIN and re-prompt
the user.

Using constrained data (digits only) helps the client to create reli-
able voice-prints in a limited amount of time efficiently. As the majority
of VBG’s customers are interactive voice response (IVR) users (stand-
alone or as an entry to a call center conversation), telephone connect

time (i.e., “call handle time”) becomes a sufficient economic con-
sideration. Thus, shorter and more compact uses of voice biometrics are
advantageous. Moreover, when RandomPIN™is combined with other
security factors, such as knowledge-based authentication (KBA), an
extremely reliable match can be provided to VBG clients - without the

Fig. 12. PESQ and STOI comparisons averaged over all noise types between log-mel spectrogram (MEL) and log-linear spectrogram (LIN) inputs for BLSTM and CED
networks.

Fig. 13. Histogram of SNR estimation of VBG RANDNUM files. Fig. 14. Histogram of SNR estimation of RedDots files.

Fig. 15. VBG RANDNUM EER results. Note that the y-axis starts from 5.0%.
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lengthy data collection requirement of free speech or passive voice
biometric applications (which VBG also supports commercially).

The second dataset, namely RedDots (Lee et al., 2015), is a collection
of short utterances in English from native and non-native speakers
reading text prompts to mobile devices. The sessions are collected over
a long period (aimed to be over a year), where each speaker records a
session per week. The dataset contains 13 female and 49 male speakers
from different regions worldwide, a total of 21 countries, which results
in vast inter-speaker variations. Since the data collection is carried out
from a mobile device, the user can choose to record an utterance in any

place, indoor or outdoor. Therefore utterances contain various types of
noise with various SNRs. We estimated the SNR of the RedDots samples
in the same way that we estimated the SNR of the VBG RANDNUM
samples. Fig. 14 shows the SNR distribution for the RedDots samples.

We conduct our experiments in a text-independent fashion.
Therefore, we use RedDots part 04: text-independent test set. There are a
total of 136,698 target trials and 5,098,950 imposter trials for males,
and 26,928 target and 184,368 imposter trials for females in this test
set. Since the number of female samples are relatively limited in this
dataset, we only use male trials in our experiments, different from the
gender-independent case in the experiments with the VBG RANDNUM
dataset.

To conduct a more comprehensive evaluation in different noise
conditions, we also mix RedDots test utterances with five types of noise
at SNRs of −6, 0, 6 and 9 dB to create more noisy utterances and report
their ASV results. To construct the UBM and i-vector models (i.e., the T
matrix), we use two other datasets, NIST SRE06 (NIS, 2006) and the
NIST SRE08 (NIS, 2008). We randomly draw 650 male speakers from
these datasets’ training set. We also added artificial noise between
10–25 dB SNR level to 150 randomly chosen samples to obtain a multi-
condition training set. Since the test samples are unconstrained speech,
we set the number of mixtures in the UBM to 2048 in our experiments,
as suggested in (Bimbot et al., 2004). Finally, we used the remaining
male data in the RedDots dataset that is not included in the trials to train
PLDA parameters.

Fig. 16. EER results for RedDots Dataset. Note that the y-axis starts from 13.0%.

Fig. 17. RedDots dataset EER results for different noise types and SNRs.
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4.4.2. Evaluations
Figs. 15 and 16 show the EER results for speech that is unprocessed

as well as speech that is enhanced with SS, Log-MMSE, RNN, R-CED,
CED and BLSTM for VBG RANDNUM and RedDots datasets, respectively.

For constrained speech data, Fig. 15 (VBG RANDNUM) shows that
BLSTM significantly decreases the EER compared to other techniques,
from the unprocessed EER (%) result of 6.59 to 5.21. This is followed by
CED with an EER (%) value of 5.78. The gap between BLSTM and CED
EER results are significant, although their PESQ and STOI values shown
in Figs. 4–6 are close. While the reason for this mismatch is unclear, this
result suggests that speech quality and intelligibility measures for
speech enhancement preprocessing modules only provide qualitative
predictions of the final speaker verification error rates. RNN yields
slightly better results compared to R-CED, which is consistent with the
PESQ and STOI results. An important observation from these results is
that there is a benefit of using DNN-based approaches as a front-end SE
module since all DNN-based methods yield EER improvements on
naturally noisy data. SS and Log-MMSE, however, significantly increases
EER, showing that they cannot deal with non-stationary noise condi-
tions well.

The same trends can be observed for unconstrained speech data
(RedDots) results shown in Fig. 16, although the improvement on EER of
the DNN-based methods are slighter compared to the VBG RANDNUM
results. SS and Log-MMSE, again, do not perform well in this dataset.

Fig. 17 shows the artificial test results, i.e., the EER results when
additional noise is introduced at an SNR of −6, 0, 6 and 9 dB to the
RedDots dataset. For all noise cases, the SS method increases the EER.
The Log-MMSE method yields EER improvements in low SNRs for
factory and cafeteria noise types, however, it does not provide EER
improvements for all the other noise types and SNRs. The DNN-based
methods yield EER improvements in most cases. The BLSTM network
performs the best for all noise types.

5. Conclusions

In this work, two DNN-based speech enhancement methods (BLSTM
and CED) are introduced, and their effect as a preprocessor for an au-
tomatic speaker verification (ASV) system is investigated. Compared to
two classical and two DNN-based speech enhancement baselines, the
proposed methods significantly improve the PESQ and STOI of the
enhanced speech on different kinds of non-stationary noise that are
unseen in the training data. Moreover, they decrease the verification
error rate on natural utterances encountered by the verification system
and on utterances artificially mixed with additional noise. We show that
all DNN-based methods investigated in this work yield performance
improvements when they are used as a front-end noise removal module
on natural noisy data collected from real customers, while the classical
methods degrade the performance in the same conditions.
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