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I. INTRODUCTION

In the physical sciences and engineering domains, music has
traditionally been considered an acoustic phenomenon. From
a perceptual viewpoint, music is naturally associated with
hearing, i.e., the audio modality. Moreover, for a long time,
the majority of music recordings were distributed through
“audio-only” media such as vinyl records, cassettes, CDs,
and mp3 files. As a consequence, existing automated music
analysis approaches predominantly focus on audio signals that
represent information from the acoustic rendering of music.

Music performances, however, are typically multimodal [1],
[2]: while sound plays a key role, other modalities are also
critical to enhancing the experience of music. In particular,
the visual aspects of music—be they disc cover art, videos
of live performances or abstract music videos—play an im-
portant role in expressing musicians’ ideas and emotions.
With the popularization of video streaming services over the
past decade, such visual representations also are increasingly
available with distributed music recordings. In fact, video
streaming platforms have become one of the preferred music
distribution channels, especially among the younger generation
of music consumers.

Simultaneously seeing and listening to a music performance
often provides a richer experience than “pure listening”. Re-
searchers find that “the visual component is not a marginal
phenomenon in music perception, but an important factor in
the communication of meanings” [3]. Even for prestigious
classical music competitions, researchers find that visually per-
ceived elements of the performance, such as gesture, motion,
and facial expressions of the performer, affect the evaluations
of judges (experts or novice alike), even more significantly
than sound [4].

Symphony music provides another example of visible com-
municated information where large groups of orchestra mu-
sicians play simultaneously in close coordination. For expert
audiences familiar with the genre, both the visible coordination
between musicians, and the ability to closely watch individuals
within the group, adds to the attendee’s emotional experience
of a concert [5]. Attendees unfamiliar with the genre can
also be better engaged via enrichment, i.e., offering supporting
information in various modalities (e.g., visualizations, textual
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explanations) beyond the stimuli which the event naturally
triggers in the physical world.

In addition to audiences of music performances, others also
benefit from information obtained through audio-visual rather
than audio-only analysis. In educational settings, instrument
learners benefit significantly from watching demonstrations by
professional musicians, where the visual presentation provides
deeper insight into specific instrument-technical aspects of
the performance (e.g., fingering, choice of strings). Generally,
when broadcasting audio-visual productions involving large
ensembles captured with multiple recording cameras, it is also
useful for the producer to be aware of which musicians are
visible in which camera stream at each point in time. In order
for such analyses to be done, relevant information needs to be
extracted from the recorded video signals and coordinated with
recorded audio. As a consequence, recently, there has been
growing interest in visual analysis of music performances,
even though such analysis was largely overlooked in the past.

In this paper, we aim to introduce this emerging area to the
music signal processing community and the broader signal
processing community. In our knowledge, this paper is the
first overview of research in this area. For conciseness, we
restrict our attention to the analysis of audio-visual music
performances, which is an important subset of audio-visual
music productions that is also representative of the main
challenges and techniques of this field of study. Other specific
applications, such as the analysis of music video clips or
other types of multi-modal recordings not involving audio and
visuals (e.g., lyrics or music score sheets), although important
in their own right, are not covered here to maintain a clear
focus and a reasonable length.

In the remainder of the paper, we first present the sig-
nificance and key challenges for audio-visual music analysis
in Section II, and survey existing work in Section III. Then
we describe notable approaches in three main research lines
organized according to how the audio-visual correspondence is
modeled: work on static correspondence in Section IV; work
on instrument-specific dynamic correspondence in Section V;
and work on modeling more general dynamic correspondence
for music source separation in Section VI. We conclude the
paper with discussions of current and future research trends
in Section VII.

II. SIGNIFICANCE AND CHALLENGES

A. Significance

Figure 1 illustrates some examples of how visual and aural
information in a music performance complements each other,
and how it offers more information on the performance than
what can be obtained by considering only the audio channel
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Figure 1. Examples of information present in three parallel representations
of a music performance excerpt: video, audio and score.

and a musical score. In fact, while the musical score is often
considered as the “ground truth” of a music performance,
significant performance-specific expressive information, such
as the use of vibrato, is not indicated in the score, and is
instead evidenced in the audio-visual performance signals.

Compared to audio-only music performance analysis, the
visual modality offers extra opportunities to extract musically
meaningful cues out of recorded performance signals. In some
cases, the visual modality allows for addressing tasks that
would not be possible in audio-only analysis, e.g., tracking a
musician’s fingerings or a conductor’s gestures, and analyzing
individual players in the same instrumental section of an or-
chestra. In other cases, the visual modality provides significant
help in task-solving, e.g., in source separation, and in the
characterization of expressive playing styles. In Section III,
we discuss several representative tasks along these lines.

Audio-visual analysis of music performances broadens the
scope of music signal processing research, connecting the
audio signal processing area with other areas, namely image
processing, computer vision, and multimedia. The integration
of audio and visual modalities also naturally creates a con-
nection to emerging research areas such as virtual reality and
augmented reality, and extends music-related human-computer
interaction. It serves as a controlled testbed for research on
multimodal data analysis, which is critical for building robust
and universal intelligent systems.

B. Challenges

The multimodal nature of audio-visual analysis of music
poses new research challenges. First, the visual scenes of mu-
sic performances present new problems for image processing
and computer vision. Indeed, the visual scene is generally
cluttered, especially when multiple musicians are involved,
who additionally may be occluded by each other and by music
stands. Also, musically meaningful motions may be subtle
(e.g., fingering and vibrato motion); and camera views may be
complex (e.g., musicians not facing to cameras, zoom-in/out
and changes of views).

Second, the way to integrate audio and visual processing
in the modeling stage of musical scene analysis is a key
challenge. In fact, independently tackling the audio and visual
modalities to merely fuse, at a later stage, the output of the
corresponding (unimodal) analysis modules, is generally not
an optimal approach. To take advantage of potential cross-
modal dependencies, it is better to combine low-level audio-
visual representations as early as possible in the data analysis
pipeline. This is, however, not always straightforward: certain
visual signals (e.g., bowing motion of string instruments) and
audio signals (e.g., note onsets) of a sound source are often
highly correlated, yet some performer movements (e.g., head
nodding are not directly related to sound [6]. How to discover
and exploit audio-visual correspondence in a complex audio-
visual scene of music performances is thus a key question.

Third, the lack of annotated data is yet another challenge.
While commercial recordings are abundant, they are usually
not annotated and also subject to copyright restrictions that
limit their distribution and use. Annotated audio datasets of
musical performances are already scarce due to the complex-
ities of recording and ground-truth annotation. Audio-visual
datasets are even more scarce and their creation requires
more effort. The lack of large-scale annotated datasets limits
the application of many supervised learning techniques that
have proven successful for data-rich problems. We note that
available music datasets are surveyed in a recent paper [7] that
details the creation of a new multi-track audio-visual classical
music dataset. The dataset provided in [7] is relatively small
with only 44 short pieces but is richly annotated, providing
individual instrument tracks to allow assessment of source
separation methods and associated music score information
in a machine readable format. At the other end of the data
spectrum, the Youtube-8M dataset [8] provides a large-scale
labeled video dataset (with embedded audio) that also includes
many music videos. However, the Youtube-8M dataset is cur-
rently only annotated with overall video labels and therefore
suited primarily for video/audio classification tasks.

III. OVERVIEW OF EXISTING RESEARCH

It is not an easy task to give a well structured overview
of an emerging field, yet here we make a first attempt from
two perspectives. Section III-A categorizes existing work into
different analysis tasks for different instruments, while Section
III-B provides a perspective on the type of audio-visual
correspondence that is exploited during the analysis.

A. Categorization of audio-visual analysis tasks

Table I organizes existing work on audio-visual analysis
of music performances along two dimensions: 1) the type of
musical instrument, and 2) the analysis task.

The first dimension is not only a natural categorization
of musicians in a music performance, it is also indicative
of the types of audio-visual information revealed during the
performance. For example, percussionists show large-scale
motions that are almost all related to sound articulation.
Pianists’ hand and finger motions are also related to sound
articulation, but they are much more subtle and also indicative
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Table I
CATEGORIZATION OF EXISTING RESEARCH ON AUDIO-VISUAL ANALYSIS OF MUSICAL INSTRUMENT PERFORMANCES ACCORDING TO THE TYPE OF THE

INSTRUMENT AND THE ANALYSIS TASK. CERTAIN COMBINATIONS OF INSTRUMENTS AND TASKS DO NOT MAKE SENSE, AND ARE MARKED BY “N/A”.
VARIOUS TECHNIQUES AND THEIR COMBINATIONS HAVE BEEN EMPLOYED, INCLUDING SUPPORT VECTOR MACHINE, HIDDEN MARKOV MODELS,

NON-NEGATIVE MATRIX FACTORIZATION, AND DEEP NEURAL NETWORKS.

Visual Is Critical Is Significant
Tasks Fingering Association Play/Non-Play Onset Vibrato Transcription Separation

Percussion N/A [9] N/A [10]
Piano [11], [12] N/A

Guitar [13], [14], [15], [16] [16]
Strings [17] [18], [19] [9], [20] [19] [21] [17], [20] [22]

Wind [9] [23]
Singing N/A

of the notes being played (i.e., the musical content). For
guitars and strings, the left hand motions are indicative of
the notes being played, while the right hand motions tell us
how the notes are articulated (e.g., legato or staccato). For
wind instruments, note articulations are difficult to see, and
almost all visible motions (e.g., fingering of clarinet or hand
positioning of trombone) are about notes. Finally, singers’
mouth shapes only reveal the syllables being sung but not
the pitch; also their body movements can be correlated to the
musical content but are not predictive enough for the details.

The second dimension is about tasks or aspects that the
audio-visual analysis focuses on. The seven tasks/aspects are
further classified into two categories: tasks in which visual
analysis is critical and tasks in which visual analysis provides
significant help. Fingering analysis is one example of the
first category. It is very difficult to infer the fingering purely
from audio while it becomes possible by observing the finger
positions. There has been research on fingering analysis from
visual analysis for guitar [13], [14], [15], [16], violin [17],
and piano [11], [12]. Fingering patterns are mostly instrument-
specific, however, the common idea is to track hand and
finger positions relative to the instrument body. Another task
is audio-visual source association, i.e., which player in the
visual scene corresponds to which sound source in the audio
mixture. This problem is addressed for string instruments by
modeling the correlation between visual features and audio
features, such as the correlation between bowing motions and
note onsets [18] and that between vibrato motions and pitch
fluctuations [19].

The second category contains more tasks. Playing/Non-
Playing (P/NP) activity detection is one of them. In an ensem-
ble or orchestral setting, it is very difficult to detect from the
audio mixture whether a certain instrument is being played, yet
the visual modality, if not occluded, offers a direct observation
of the playing activities of each musician. Approaches based
on image classification and motion analysis [9], [20] have been
proposed. Vibrato analysis for string instruments is another
task. The periodic movement of the fingering hand detected
from visual analysis has been shown to correlate well with the
pitch fluctuation of vibrato notes, and has been used to detect
vibrato notes and analyze the vibrato rate and depth [21].
Automatic music transcription and its subtasks such as multi-
pitch analysis are very challenging if only audio signals are
available. It has been shown that audio-visual analysis is ben-

eficial for monophonic instruments such as violin [17], poly-
phonic instruments such as guitar [16] and drums [10], and
music ensembles such as string ensembles [20]. The common
underlying idea is to improve audio-based transcription results
with play/non-play activity detection and fingering analysis.
Finally, audio source separation can be significantly improved
by audio-visual analysis. Motions of players are often highly
correlated to sound characteristics of sound sources [6]. There
has been work on modeling such correlations for audio source
separation [22].

Besides instrumental players, conductor gesture analysis
has also been investigated in audio-visual music performance
analysis. Indeed, conductors do not directly produce sounds
(besides occasional noises), however, they are critical in music
performances. Under the direction of different conductors,
the same orchestra can produce significantly different per-
formances of the same musical piece. One musically inter-
esting research problem is comparing conducting behaviors
of different conductors and analyzing their influences on the
sound production of the orchestra. There has been work on
conductor baton tracking [24] and gesture analysis [25] using
visual analysis.

B. Different levels of audio-visual correspondence

Despite the various forms of music performances and
analysis tasks, the common underlying idea of audio-visual
analysis is to find and model the correspondence between
audio and visual modalities. This correspondence can be static,
i.e., between a static image and a short time frame of audio.
For example, a certain posture of a flute player is indicative
of whether the player is playing the instrument or not; a
static image of a fingering hand is informative for the notes
being played. This correspondence can also be dynamic, i.e.,
between a dynamic movement observed in the video and the
fluctuation of audio characteristics. For example, a strumming
motion of the right hand of a guitar player is a strong
indicator of the rhythmic pattern of the music passage; the
periodic rolling motion of the left hand of a violin player
well corresponds to the pitch fluctuation of vibrato notes. Due
to the large variety of instruments and their unique playing
techniques, this dynamic correspondence is often instrument-
specific. The underlying idea of dynamic correspondence,
however, is universal among different instruments. Therefore,
it is appealing to build a unified framework for capturing
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this dynamic correspondence. If such correspondence can
be captured robustly, the visual information can be better
exploited to stream the corresponding audio components into
sources, leading to visually informed source separation.

In the following three sections, we will further elaborate
these different levels of audio-visual correspondence by sum-
marizing existing works and presenting concrete examples.

IV. STATIC AUDIO-VISUAL CORRESPONDENCE

In this section, we first discuss works focusing on the
modeling of static audio-visual correspondence in music per-
formances. “Static” here refers to correspondences between
sonic realizations and their originating sources that remain
stable over the course of a performance, and for which the
correspondence analysis does not rely on short-time dynamic
variations. After giving a short overview with more concrete
examples, a more extended case study discussion will be given
on Playing/Non-Playing detection in instrument ensembles.

A. Overview

Typical static audio-visual correspondences have to do with
positions and poses: which musician sits where, at what parts
of the instrument does the interaction occur that leads to sound
production, and how can the interaction with the instrument
be characterized?

Regarding musicians’ positions, when considering large
ensemble situations, it will be too laborious for a human to
annotate every person in every shot, especially when multiple
cameras record the performance at once. At the same time,
due to the typically uniform concert attire worn by ensemble
members, and musicians being part of large player groups
that will actively move and occlude one another, recognizing
individual players purely by computer vision methods is again
a non-trivial problem, for which it also would be unrealistic
to acquire large amounts of training data. However, within
the same piece, orchestra musicians will not change relative
positions with respect to one another. Therefore, the orchestra
setup can be considered as a quasi-static scene. The work
in [26] proposed to identify each musician in each camera
over a full recording timeline by combining partial visual
recognition with knowledge of this scene’s configuration, and a
human-in-the-loop approach in which humans are strategically
asked to indicate the identities of performers in visually similar
clusters. With minimal human interaction, a scene map is built
up, and the spatial relations within this scene map assist face
clustering in crowded quasi-static scenes.

Regarding positions of interest on an instrument, work has
been performed on the analysis of fingering. This can be
seen as static information, as the same pressure action on
the same position of the instrument will always yield the
same pitch realization. Visual analysis has been performed to
analyze fingering actions on pianos [11], [12], guitars [13],
[14], [15], [16] and violins [16], [17]. Main challenges involve
the detection of the fingers in unconstrained situations and
without the need to add markers to the fingers.

A

B

…

Figure 2. Example of hierarchical clustering steps for Playing/Non-Playing
detection: First, diarization is performed on global face clustering results (left)
to identify a musician’s identity; then, within each global artist cluster, sub-
clusters are assigned with a Playing/Non-Playing label (right).

B. Case study: Playing/Non-Playing detection in orchestras

Whether individual musicians in large ensembles are play-
ing their instrument or not seems banal information; however,
this information can be significant up to critical in audio-visual
analysis. Within the same instrument group, not all players
may be playing at once. If this occurs, in a multi-channel
audio recording, it is not trivial to distinguish which subset
of individuals is playing, while this will visually be obvious.
Furthermore, having a global overview of what instruments are
active and visible in performance recordings provides useful
information for audio-visual source separation.

In [9], a method is proposed to detect Playing/Non-Playing
(P/NP) information in multi-camera recordings of symphonic
concert performances, in which unconstrained camera move-
ments and varying shooting perspectives occur. As a conse-
quence, performance-related movement may not always be
easily observed from the video, although coarser P/NP infor-
mation can still be inferred through face and pose clustering.

A hierarchical method is proposed, that is illustrated in
Figure 2, and focuses on employing clustering techniques,
rather than learning sophisticated human-object interaction
models. First, musician diarization is performed to annotate
which musician appears when and where in a video. For this,
key frames are extracted at regular time intervals. In each
keyframe, face detection is performed, including an estimation
of the head pose angle, as well as inference of bounding
boxes for the hair and upper body of the player. Subsequently,
segmentation is performed on the estimated upper body of
the musician, taking into account the gaze direction of the
musician, as the instrument is expected to be present in the
same direction.

After this segmentation step, face clustering methods are
applied, including several degrees of contextual information
(e.g., on the scene and upper body), and different feature sets,
the richest feature set consisting of a Pyramid of Histograms
of Oriented Gradients, the Joint Composite Descriptor, Gabor
texture, Edge Histogram and Auto Color Correlogram.

Upon obtaining per-musician clusters, a renewed clustering
is performed per musician, aiming to generate sub-clusters
that only contain images of the same musician, performing
one particular type of object interaction, recorded from one
particular camera viewpoint. Finally, a human annotator action
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completes the labeling step: an annotator has to indicate who
the musician is, and whether a certain sub-cluster contains a
Playing or Non-Playing action. As the work in [9] investigates
various experimental settings (e.g., clustering techniques, fea-
ture sets), yielding thousands of clusters, expected annotator
action at various levels of strictness is simulated by setting
various thresholds on how dominant a class within a cluster
should be.

An extensive discussion of evaluation outcomes per frame-
work module is given in [9]. Several takeaway messages can
be taken from this work. First of all, face and upper body
regions are most informative for clustering. Furthermore, the
proposed method can effectively discriminate Playing vs. Non-
Playing action, while generating a reasonable amount of sub-
clusters (i.e., enough to yield informative sub-clusters, but not
too many, which would cause high annotator workload). Face
information alone may already be informative, as it indirectly
reveals pose. However, in some cases, clustering cannot yield
detailed relevant visual analyses (e.g., subtle mouth movement
for a wind player), and the method has a bias towards
false positives, caused by playing anticipation movement. The
application of merging strategies per instrumental part helps in
increasing timeline coverage, even if a musician is not always
detected. Finally, high annotator rejection thresholds (demand-
ing for clear majority classes within clusters) effectively filter
out non-pure clusters.

One direct application of P/NP activity detection is in
automatic music transcription. In particular, for multi-pitch
estimation (MPE), P/NP information can be used to improve
the estimation of instantaneous polyphony (i.e., the number
of pitches at a particular time) of an ensemble performance,
assuming that each active instrument only produces one pitch
at a time. Instantaneous polyphony estimation is a difficult task
from the audio modality itself, and its errors constitute a large
proportion of music transcription errors. Furthermore, P/NP is
also helpful for multi-pitch streaming (MPE), i.e., assigning
pitch estimates to pitch streams corresponding to instruments:
a pitch estimate should only be assigned to an active source.
This idea has been explored in [20] and it is shown that both
MPE and MPS accuracies are significantly improved by P/NP
activity detection for ensemble performances.

V. DYNAMIC AUDIO-VISUAL CORRESPONDENCE

In a music performance, a musician makes many move-
ments [6]. Some movements (e.g., bowing and fingering) are
the articulation sources of sound, while others (e.g., head
shaking) are responses to the performance. In both cases, the
movements show a strong correspondence with certain feature
fluctuations in the music audio. Capturing this dynamic corre-
spondence is important for the analysis of music performances.

A. Overview

Due to the large variety of musical instruments and their
playing techniques, the dynamic audio-visual correspondence
shows different forms. In the literature, researchers have inves-
tigated the correspondence between bowing motions and note
onsets of string instruments [18], between hitting actions and
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Figure 3. System overview of an audio-visual vibrato detection and analysis
system for string instruments in ensemble performances, proposed in [21].

drum sounds of percussion instruments [10], and between left-
hand rolling motions and pitch fluctuations of string vibrato
notes [21], [19]. On the visual modality, object tracking and
optical flow techniques have been adopted to track relevant
motions, while on the audio modality, different audio features
have been considered.

The main challenge lies in determining what/where to
look for the dynamic correspondence. This is challenging not
only because the correspondence is instrument- and play-
ing technique-dependent, but also because there are many
irrelevant motions in the visual scene [6] and interferences
from multiple simultaneous sound sources in the audio signal.
Almost all existing methods rely on the prior knowledge of
instrument type and playing techniques to attend to relevant
motions and sound features. For example, in [18] for the
association between string players and score tracks, the cor-
respondence between bowing motions and some note onsets
are captured. This is informed by the fact that many notes of
string instruments are started with a new bow stroke and that
different tracks often show different onset patterns. For the
association of wind instruments, the onset cue is still useful,
but the motion capture module would need to be revised to
capture the more subtle and diverse movements of fingers.

B. Case study: vibrato analysis of string instruments

Vibrato is an important musical expression, and vibrato
analysis is important for musicological studies, music edu-
cation, and music synthesis. Acoustically, vibrato is charac-
terized by a periodic fluctuation of pitch with a rate between
5-10 Hz. Audio-based vibrato analysis methods rely on the
estimation of the pitch contour. In an ensemble setting, how-
ever, multi-pitch estimation is very challenging due to the
interference of other sound sources. For string instruments,
vibrato is the result of periodic change of the length of the
vibrating string, which is effectuated by the rolling motion of
the left hand. If the rolling motion is observable, then vibrato
notes can be detected and analyzed with the help of visual
analysis. Because visual analysis does not suffer from the
presence of other sound sources (barring occlusion), audio-
visual analysis offers a tremendous advantage for vibrato
analysis of string instruments in ensemble settings.

In [21], an audio-visual vibrato detection and analysis
system is proposed. As shown in Figure 3, this approach
integrates audio, visual and score information, and contains
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several modules to capture the dynamic correspondence among
these modalities.

The first step is to detect and track the left hand for each
player using the Kanade-Lucas-Tomasi (KLT) tracker. This
results in a dynamic region of the tracked hand, shown as
the green box in Figure 4. Optical flow analysis is then
performed to calculate motion velocity vectors for each pixel
in this region in each video frame. Motion vectors in frame
t are spatially averaged as u(t) = [ux(t), uy(t)], where ux

and uy represents the mean motion velocities in x and y
directions, respectively. It is noted that these motion vectors
may also contain the slower large-scale body movements that
are not associated with vibrato. Therefore, to eliminate the
body movement effects, the moving average of the signal u(t)
is subtracted from itself to obtain a refined motion estimation
v(t). The right subfigure of Figure 4 shows the distribution of
all v(t) across time, from which the principal motion direction
can be inferred through Principal Component Analysis (PCA),
which aligns well along the fingerboard. The projection of
the motion vector v(t) onto the principal direction is defined
as the 1-d motion velocity curve V (t). Taking an integration
over time, one obtains a 1-d hand displacement curve X(t) =∫ t

0
V (τ)dτ , that corresponds directly to the pitch fluctuation.
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Figure 4. Motion capture results from left hand tracking (left), color encoded
pixel velocities (middle), and scatter plot of frame-wise refined motion
velocities (right).

In order to use the motion information to detect and
analyze vibrato notes, one needs to know which note the hand
motion corresponds to. This is solved by audio-visual source
association and audio-score alignment. In this work, audio-
visual source association is performed through the correlation
between bowing motions and note onsets, as described in [18].
Audio-score alignment [27] synchronizes the audio-visual
performance (assuming perfect audio-visual synchronization)
with the score, from which onset and offset times of each note
are estimated. This can be done by comparing the harmonic
content of the audio and the score and dynamic time warping.
Score-informed source separation is then performed and the
pitch contour of each note is estimated from the separated
source signal.

Given the correspondence between motion vectors and
sound features (pitch fluctuations) of each note, vibrato de-
tection is performed with two methods. The first method uses
a Support Vector Machine (SVM) to classify each note as
vibrato or non-vibrato using features extracted from the motion
vectors. The second method simply sets a threshold on the
auto-correlation of the 1-d hand displacement curve X(t).

For vibrato notes, vibrato rate can also be calculated from
the autocorrelation of the hand displacement curve X(t).
Vibrato extent (i.e., dynamic range of the pitch contour),
however, cannot be estimated by capturing the motion extent.
This is because it varies upon the camera distance and angle,
as well as the vibrato articulation style, hand position, and the
instrument type. To address this issue, the hand displacement
curve is scaled to match the estimated noisy pitch contour
from score-informed audio analysis. Specifically, assuming
F (t) is the estimated pitch contour (in MIDI number) of the
detected vibrato note from audio analysis after subtracting its
DC component, the vibrato extent ve (in musical cents) is
estimated as v̂e as

v̂e = argmin
ve

toff∑
t=ton

∣∣∣∣100 · F (t)− ve
X(t)

ŵe

∣∣∣∣2 , (1)

where 100 · F (t) is the pitch contour in musical cents; ŵe is
the dynamic range of X(t).

VI. MUSIC SOURCE SEPARATION USING DYNAMIC
CORRESPONDENCE

Audio source separation in music recordings is a particularly
interesting type of task where audio-visual matching between
visual events of a performer’s actions and their audio rendering
can be of great value. Notably, such an approach enables ad-
dressing audio separation tasks which could not be performed
in a unimodal fashion (solely analyzing the audio signal), for
instance when considering two or more instances of the same
instruments, say a duet of guitars or violins, as done in the
work of Parekh et al. [22]. Knowing whether a musician is
playing or not at a particular point in time gives important cues
for source allocation. Seeing the hand and finger movements
of a cellist helps us attend to the cello’s section sound in
an orchestral performance. The same idea applies to visually
informed audio source separation.

A. Overview

There is a large body of works in multimodal (especially
audio-visual) source separation for speech signals but much
less effort has been dedicated to audio-visual music perfor-
mance analysis for source separation.

It was however shown in the work of Godoy et al. [6] that
there are certain players’ motions that are highly correlated
to sound characteristics of audio sources. In particular, the
authors highlighted the correlation that may exist between
music and hand movements or the sway in the upper body,
by analyzing a solo piano performance. An earlier work by
Barzelay and Shechner [28] has exploited such a correlation
in introducing an audio-visual system for individual musical
source enhancement in violin-guitar duets. The authors isolate
audio-associated visual objects (AVO) by searching for cross-
modal temporal incidences of events and then use these to
perform musical source separation.
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B. Case study: motion-driven source separation in a string
quartet

The idea that motion characteristics obtained from visual
analysis encode information about the physical excitation of
a sounding object is also exploited in more recent studies.
As an illustrative example, we detail below a model in which
it is assumed that the characteristics of a sound event (e.g.,
musical note) is highly correlated with the speed of sound-
producing motion [22]. More precisely, the proposed approach
extends the popular Non-negative Matrix Factorization (NMF)
framework using visual information about objects’ motion.
Applied to string quartets, the motion of interest is mostly
carried by bow speed. The main steps of this method are the
following (see Figure 5).

Aggregated Average 
Motion Speeds

Source Separation
Joint Audio-Visual Decomposition

Spectrogram

t

v

Figure 5. A joint audio-visual music source separation system.

1) Gather motion features, namely average motion speeds
(further described below), in a data matrix M ∈ RN×C

+

which summarizes the speed information of coherent
motion trajectories within pre-defined regions. In the
simplest case, there is one region per musician (i.e., per
source). C =

∑
j Cj is the number of motion clusters

where Cj is the number of clusters per source j and N
is the frame size of the Short-Time Fourier Transform
(STFT) used for the computation of the audio signal’s
spectrogram.

2) Ensure that typical motion speeds (such as bow speed)
are active synchronously with typical audio events. This
is done by constraining the audio spectrogram decompo-
sition obtained by NMF V ≈ WH and the motion data
decomposition M ≈ H⊤A to share the same activity
matrix H ∈ RK×N

+ , where W ∈ RF×K
+ is the ma-

trix collecting the so-called nonnegative audio spectral
patterns (column-wise), and where A = [α1, . . . ,αC ]
gathers nonnegative linear regression coefficients for
each motion cluster with αc = [α1c, . . . , αKc]

T .
3) Ensure that only a limited number of motion clusters are

active at a given time. This can be done by imposing a
sparsity constraint on A.

4) Assign an audio pattern to each source for separation and
reconstruction. This is done by assigning the k-th basis
vector (column of W) to the jth source if argmaxc αkc

belongs to the jth source cluster. The different sources
are then synthesized by element-wise multiplication be-
tween the soft mask, given by (WjHj)./(WH), and

the mixture spectrogram followed by an inverse STFT,
where “./” stands for element-wise division, Wj and
Hj are the submatrices of spectral patterns wk and their
activations hk assigned to the jth source (see Figure 6).

C

N

Source j

K

N K

C

N

F F

K

K

N

t

v

Source j
Motion Speeds

Audio Mixture's
Spectrogram

Figure 6. Joint audio-visual source separation: illustration of the audio pattern
assignment to source j (example for the k-th basis vector).

A possible formulation for the complete model can then be
written as the following optimization problem:

minimize
(W,H,A)⩾0
∥wk∥=1, ∀k

DKL(V|WH)+λ∥M−H⊤A∥2F+µ∥A∥1, (2)

where DKL is the Kullback-Leibler divergence, λ and µ
are positive hyperparameters (to be tuned) and ∥.∥F is the
Frobenius norm.

More details can be found in [22], but this joint audio-
visual approach significantly outperformed for most situations
the corresponding sequential approach proposed by the same
authors and the audio-only approach introduced in [29]. For
example, for a subset of the URMP dataset [30], the joint
approach obtained a Signal-to-Distortion Ratio (SDR) of 7.14
dB for duets and 5.14 dB for trios while the unimodal approach
of [29] obtained SDRs respectively of 5.11 dB and 2.18 dB.
It is worth mentioning that in source separation a difference
of +1 dB is usually acknowledged as significant.

The correlation between motion in the visual modality and
audio is also at the core of some other recent approaches.
While bearing some similarities with the system detailed
above, the approach described in [18] further exploits the
knowledge of the MIDI score to well align the audio recording
(e.g., onsets) and video (e.g., bow speeds). An extension
of this work is presented in [19] where the audio-visual
source association is performed through multi-modal analysis
of vibrato notes. It is in particular shown that the fine-grained
motion of the left hand is strongly correlated with the pitch
fluctuation of vibrato notes and that this correlation can be
used for audio-visual music source separation in a score-
informed scenario.

VII. CURRENT TRENDS AND FUTURE WORK

This article provides an overview of the emerging field of
audio-visual music performance analysis. We used specific
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case studies to highlight how techniques from signal process-
ing, computer vision, and machine learning can jointly exploit
the information contained in the audio and visual modalities
to effectively address a number of music analysis tasks.

Current work in audio-visual music analysis has been con-
strained by the availability of data. Specifically, the relatively
small size of current annotated audio-visual datasets has
precluded the extensive use of data-driven machine learning
approaches, such as deep learning. Recently, deep learning has
been utilized for vision-based detection of acoustic timed mu-
sic events [23]. Specifically, the detection of onsets performed
by clarinet players is addressed in this work by using a 3D
convolutional neural network (CNN) that relies on multiple
streams, each based on a dedicated region of interest (ROI)
from the video frames that is relevant to sound production.
For each ROI, a reference frame is examined in the context of
a short surrounding frame sequence, and the desired target is
labeled as either an “onset” or “not-an-onset”. Although state-
of-the-art audio-based onset detection methods outperform the
model proposed in [23], the dataset, task setup and architecture
setup give rise to interesting research questions, especially on
how to deal with significant events in temporal multimedia
streams that occur at fine temporal and spatial resolutions.
Interesting ideas exploiting deep learning models can also
be found in related fields. For example, in [31] a promising
strategy in the context of emotional analysis of music videos
is introduced. Their approach consists in fusing learned audio-
visual mid-level representations using CNNs. Another impor-
tant promising research direction is transfer learning which
could better cope with the limited size of annotated audio-
visual music performance datasets. As highlighted in [32], it
is possible to learn an efficient audio feature representation for
an audio-only application, specifically audio event recognition,
by using a generic audio-visual database.

The inherent mismatch between the audio content and the
corresponding image frames in a large majority of video
recordings remains a key challenge for audio-visual music
analysis. For instance, at a given point in time, edited videos
of live performances often show only part of the performers’
actions (think of live orchestra recordings). In such situations,
the audio-visual analysis systems need to be flexible enough to
effectively exploit the partial and intermittent correspondences
between the audio and visual streams. Multiple instance learn-
ing techniques already used for multi-modal event detection in
the computer vision community may offer an attractive option
for addressing this challenge.

As new network architectures are developed for dealing
with such structure in multi-modal temporal signals and as
significantly larger annotated datasets become available, we
expect that deep learning based data-driven machine learning
will lead to rapid progress in audio-visual music analysis,
mirroring the deep learning revolution in computer vision,
natural language processing, and audio analysis.

Beyond the immediate examples included in the case studies
presented in this paper, audio-visual music analysis can be
extended toward other music genres including pop, jazz, and
world music. It can also help improve a number of applications
in various musical contexts. Video based tutoring for music

lessons is already popular (for examples, see guitar lessons
on YouTube). The use of audio-visual music analysis can
make such lessons richer by better highlighting the relations
between the player’s actions and the resulting musical effects.
Audio-visual music analysis can similarly be used to enhance
other music understanding/learning activities, including score-
following, auto-accompaniment, and active listening. Better
tools for modeling the correlation between visual and audio
modalities can also enable novel applications beyond the anal-
ysis of music performances. For example, in recent work on
cross-modal audio-visual generation, sound to image sequence
generation, or video to sound spectrogram generation has been
demonstrated using deep generative adversarial networks [33].
Furthermore, the underlying tools and techniques can also help
address other performing arts that involve music. Examples
of such work include dance movement classification [34] and
alignment of different dancers’ movements within a single
piece [35] by using (visual) gesture tracking and (audio)
identification of stepping sounds.
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