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ABSTRACT

Note-level music transcription, which aims to transcribe
note events (often represented by pitch, onset and offset
times) from music audio, is an important intermediate step
towards complete music transcription. In this paper, we
present a note-level music transcription system, which is
built on a state-of-the-art frame-level multi-pitch estima-
tion (MPE) system. Preliminary note-level transcription
achieved by connecting pitch estimates into notes often
lead to many spurious notes due to MPE errors. In this
paper, we propose to address this problem by randomly
sampling notes in the preliminary note-level transcription.
Each sample is a subset of all notes and is viewed as a note-
level transcription candidate. We evaluate the likelihood
of each candidate using the MPE model, and select the
one with the highest likelihood as the final transcription.
The likelihood treats notes in a transcription as a whole
and favors transcriptions with less spurious notes. Experi-
ments conducted on 110 pieces of J.S. Bach chorales with
polyphony from 2 to 4 show that the proposed sampling
scheme significantly improves the transcription performance
from the preliminary approach. The proposed system also
significantly outperforms two other state-of-the-art systems
in both frame-level and note-level transcriptions.

1. INTRODUCTION

Automatic Music Transcription (AMT) is one of the fun-
damental problems in music information retrieval. Gen-
erally speaking, AMT is the task of converting a piece of
music audio into a musical score. A complete AMT sys-
tem needs to transcribe both the pitch and rhythmic content
[5]. On transcribing the pitch content, AMT can be per-
formed at three levels from low to high: frame-level, note-
level, and stream-level [7]. Frame-level transcription (also
called multi-pitch estimation) aims to estimate concurrent
pitches and instantaneous polyphony in each time frame.
Note-level transcription (also called note tracking) tran-
scribes notes, which are characterized not only by pitch,
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but also by onset and offset. Stream-level transcription
(also called multi-pitch streaming) organizes pitches (or
notes) into streams according to their instruments. From
the frame-level to the stream-level, more parameters and
structures need to be estimated, and the system is closer to
a complete transcription system.

While there are many systems dealing with frame-level
music transcription, only a few transcribe music at the note
level [5]. Among these systems, most are built based on
frame-level pitch estimates. The simplest way to convert
frame-level pitch estimates to notes is to connect consecu-
tive pitches into notes [4, 9, 15]. During this process, non-
significant errors in frame-level pitch estimation can cause
significant note tracking errors. False alarms in pitch es-
timates will cause many notes that are too short, while
misses can break a long note into multiple short ones. To
alleviate these errors, researchers often fill the small gaps
to merge two consecutive notes with the same pitch [2, 7],
and apply minimum length pruning to remove too-short
notes [4, 6, 7]. This idea has also been implemented with
more advanced techniques such as hidden Markov mod-
els [12]. Besides the abovementioned methods that are en-
tirely based on frame-level pitch estimates, some methods
utilize other information in note tracking, such as onset in-
formation [10, 14] and musicological information [13, 14].

In this paper, we propose a new note-level music tran-
scription system. It is built based on an existing multi-
pitch estimation method [8]. In [8], a multi-pitch likeli-
hood function was defined and concurrent pitches were es-
timated in a maximum likelihood fashion. This likelihood
function tells how well the set of pitches as a whole fit
to the audio frame. In this paper, we modify [8] to also
define a single-pitch likelihood function. It tells the likeli-
hood (salience) that a pitch is present in the audio frame.
Then preliminary note tracking is performed by connect-
ing consecutive pitches into notes and removing too-short
notes. The likelihood of each note is calculated as the prod-
uct of the likelihood of all its pitches. The next step is
the key step in the proposed system. We randomly sample
subsets of notes according to their likelihood and lengths.
Each subset is treated as a possible note-level transcrip-
tion. The likelihood of such a transcription is then defined
as the product of its multi-pitch likelihood in each frame.
Finally, the transcription with the maximum likelihood is
returned as the output of the system. We carried out exper-
iments on the Bach10 dataset [8] containing Bach chorales
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Figure 1. System overview of the proposed note-level
transcription system.

with different polyphony. Experiments show that the pro-
posed system significantly improves the transcription per-
formance from the preliminary transcription, and signifi-
cantly outperforms two state-of-the-art systems at both the
note level and frame level on the dataset.

2. PROPOSED SYSTEM

Figure 1 illustrates the overview of the system. It consists
of three main stages: multi-pitch estimation, preliminary
note tracking, and final note tracking. The first stage is
based on [8] with some modifications. The second stage
adopts the common filling/prunning strategies used in the
literature to convert pitches into notes. The third stage is
the main contribution of the paper. Figure 2 shows tran-
scription results obtained at different stages of the system
on a piece of J.S. Bach 4-part chorale.

2.1 Multi-pitch Estimation

In [8], Duan et al. proposed a maximum likelihood method
to estimate pitches from the power spectrum of each time
frame. In the maximum likelihood formulation, pitches
(and the polyphony) are the parameters to be estimated
while the power spectrum is the observation. The like-
lihood function Lmp({p1, · · · , pN}) describes how well
a set of N pitches {p1, · · · , pN} as a whole fit with the
observed spectrum, and hence is called a multi-pitch like-
lihood function. The power spectrum is represented as
peaks and the non-peak region, and the likelihood func-
tion is defined for both parts. The peak likelihood favors
pitch sets whose harmonics can explain peaks, while the
non-peak region likelihood penalizes pitch sets whose har-
monic positions are in the non-peak region. Parameters of
the likelihood function were trained from thousands of mu-
sical chords mixed with note samples whose ground-truth
pitches were pre-calculated. The maximum likelihood es-
timation process uses an iterative greedy search strategy.

It starts from an empty pitch set, and in each iteration the
pitch candidate that results in the highest multi-pitch like-
lihood increase is selected. The process is terminated by
thresholding on the likelihood increase, which also serves
for polyphony estimation. After estimating pitches in each
frame, a pitch refinement step that utilizes contextual in-
formation is performed to remove inconsistent errors.

In this paper, we use the same method to perform MPE
in each frame. Differently, we change the instantaneous
polyphony estimation parameter settings to achieve a high
recall rate of the pitch estimates. This is because the note
sampling module in Stage 3 will only remove false alarm
notes but cannot add back missing notes (detailed expla-
nation in Section 2.3). In addition, we also calculate a
single-pitch likelihood Lsp(p) for each estimated pitch p.
We define it as the multi-pitch likelihood plugged in with
the single pitch, i.e., Lsp(p) = Lmp({p}). This likelihood
describes how well the single pitch can explain the mix-
ture spectrum, which apparently will not be very good. But
from another perspective, this likelihood can be viewed as
a salience of the pitch. One important property of multi-
pitch likelihood is that it is not additive, i.e., the multi-pitch
likelihood of a set of pitches is usually much smaller than
the sum of their single-pitch likelihoods:

Lmp({p1, · · · , pN}) <
N∑
i=1

Lmp({pi}) =
N∑
i=1

Lsp(pi)

(1)
The reason is that the multi-pitch likelihood definition in
[8] considers the interaction between pitches. For exam-
ple, in the peak likelihood definition, a peak will be ex-
plained by only one pitch in the pitch set, the one whose
corresponding harmonic gives the best fit to the frequency
and amplitude of the peak, even if the peak could be ex-
plained by multiple pitches. In other words, the single-
pitch likelihood considers each pitch independently while
the multi-pitch likelihood considers the set as a whole.

The reason of calculating the single-pitch likelihood is
because we need to calculate a likelihood (salience) for
each note in the second stage, which is further because
we need to sample notes using their likelihood in the third
stage. Since pitches in the same frame belong to differ-
ent notes, we need to figure out the likelihood (salience) of
each pitch instead of the likelihood of the whole pitch set.

Figure 2(a) shows the MPE result on the example piece.
Compared to the ground-truth in (d), it is quite noisy and
contains many false alarm pitches, although the main notes
can be inferred visually.

2.2 Preliminary Note Tracking

In this stage, we implement a preliminary method to con-
nect pitches into notes, with the ideas of filling and prun-
ing that were commonly used in the literature [2, 4, 6, 7].
We first connect pitches whose frequency difference is less
than 0.3 semitones and time difference is less than 100 ms.
Each connected component is then viewed as a note. Then
notes shorter than 100 ms are removed. The 0.3 semitones
threshold corresponds to the range within which the pitch
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Figure 2. Transcription results on the first 11 seconds of Ach Lieben Christen, a piece of 4-part chorales by J.S. Bach. In
(a), each pitch is plotted as a point. In (b)-(d), each note is plotted as a line whose onset is marked by a red circle.

often fluctuates within a note, while the 100 ms threshold
is a reasonable length of a fast note, as it is the length of a
32nd note in music with a tempo of 75 beats per minute.

Each note is characterized by its pitch, onset, offset, and
note likelihood. The onset and offset times are the time of
the first and last pitch in the note, respectively. The pitch
and likelihood are calculated by averaging the pitches and
single-pitch likelihood values of all the pitches within the
note. Again, this likelihood describes the salience of the
note in the audio.

Figure 2(b) shows the preliminary note tracking result.
Compared to (a), many noisy isolated pitches have been
removed. However, compared to (d), there are still a num-
ber of spurious notes, caused by consistent MPE errors
(e.g., the long spurious note starting at 10 seconds around
MIDI number 80, and a shorter note starting at 4.3 seconds
around MIDI number 60). A closer look tells us that both
notes and many other spurious notes are higher octave er-
rors of some already estimated notes. This makes sense as
octave errors take about half of all errors in MPE [8].

Due to the spurious notes, the instantaneous polyphony
constraint is often violated. The example piece has four
monophonic parts and at any time there should be no more
than four pitches. However, it is often to see more than four
notes going simultaneous in Figure 2(b) (e.g., 0-1 seconds,
4-6 seconds, and 10-11 seconds). On the other hand, these
spurious notes are hard to remove if we consider them in-
dependently: They are long enough from being pruned by
the minimum length; They also have high enough likeli-
hood, as the note likelihood is the average likelihood of its
pitches. Therefore, we need to consider the interaction be-

tween different notes to remove these spurious notes. This
leads to the next stage of the system.

2.3 Final Note Tracking

The idea of this stage is quite simple. Thanks to the MPE
algorithm in Stage 1, the transcription obtained in Stage 2
inherits the high recall and low precision property. There-
fore, a subset of the notes that do not contain many spu-
rious notes but contain almost all correct notes must be a
better transcription. The only question now is how can we
know which subset is a good transcription. This question
can be addressed by an exploration-evaluation strategy: we
first explore a number of subsets, and then we evaluate
these subsets according to some criterion. But there are
two problems of this strategy: 1) how can we efficiently
explore the subsets? The number of all subsets is two to
the power of the number of notes, hence it is inefficient to
enumerate all the subsets. 2) What criterion should we use
to evaluate the subsets? If our criterion considers notes in-
dependently, then it would not work well, as the spurious
notes are hard to distinguish from correct notes in terms of
individual note properties such as length and likelihood.

2.3.1 Note Sampling

Our idea to address the exploration problem is to perform
note sampling. We randomly sample notes without re-
placement according to their weights. The weight equals
to the product of the note length and the inverse of the neg-
ative logarithmic note likelihood. Essentially, longer notes
with higher likelihood are more likely to be sampled into
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the subset. In this way, we can explore different note sub-
sets, and can guarantee that notes contained in each subset
are mostly correct. During the sampling, we also consider
the instantaneous polyphony constraint. A note will not be
sampled if adding it to the subset would violate the instan-
taneous polyphony constraint. The sampling process stops
if there is no valid note to sample any more.

We perform the sampling process M times to gener-
ate M subsets of the notes output in Stage 2. Each sub-
set is viewed as a transcription candidate. We then eval-
uate the transcription likelihood for each candidate and
select the one with the highest likelihood. The transcrip-
tion likelihood is defined as the product of the multi-pitch
likelihood of all time frames in the transcription. Since
multi-pitch likelihood considers interactions between si-
multaneous pitches, the transcription likelihood also con-
siders interactions between simultaneous notes. This can
help remove spurious notes which are higher octave errors
of some correctly transcribed notes. This is because all the
peaks that a higher octave error pitch can explain can also
be explained by the correct pitch, hence having the octave
error pitch in addition to the correct pitch would not in-
crease the multi-pitch likelihood much.

2.3.2 Chunking

The number of subsets (i.e., the sampling space) increases
with the number of notes exponentially. If we perform
sampling on a entire music piece that contains hundreds
of notes, it is likely to require many times of sampling to
reach a good subset (i.e., transcription candidate). In or-
der to reduce the sampling space, we segment the prelimi-
nary note tracking transcription into one-second long non-
overlapping chunks and perform sampling and evaluation
in each chunk. Finally, selected transcriptions of differ-
ent chunks are merged together to get the final transcrip-
tion of the entire piece. Notes that span across multiple
chunks can be sampled in all the chunks, and they will ap-
pear in the final transcription if they appear in the selected
transcription of some chunk. Depending on the tempo and
polyphony of the piece, the number of notes within a chunk
can be different. For the 4-part Bach chorales tested in this
paper, there are about 12 notes per chunk, and we found
sampling 100 subsets gives good accuracy and efficiency.

Figure 2(c) shows the final transcription of the system.
We can see that many spurious notes are removed from (b)
while most correct notes remain, resulting a much better
transcription. The final transcription is very close to the
ground-truth transcription.

3. EXPERIMENTS

3.1 Data Set

We use the Bach10 dataset [8] to evaluate the proposed
system. This dataset consists of real musical instrumental
performances of ten pieces of J.S. Bach four-part chorales.
Each piece is about thirty seconds long and was performed
by a quartet of instruments: violin, clarinet, tenor saxo-
phone and bassoon. Both the frame-level and note-level

ground-truth transcriptions are provided with the dataset.
In order to evaluate the system on music pieces with differ-
ent polyphony, we use the dataset-provided matlab script
to create music pieces with different polyphony, which are
different combinations of the four parts of each piece. Six
duets, four trios and one quartet for each piece was created,
totaling 110 pieces of music with polyphony from 2 to 4.

3.2 Evaluation Measure

We evaluate the proposed transcription system with com-
monly used note-level transcription measures [1]. A note
is said to be correctly transcribed, if it satisfies both the
pitch condition and the onset condition: its pitch is within
a quarter tone from the pitch of the ground-truth note, and
its onset is within 50 ms from the ground-truth onset. Off-
set is not considered in determining correct notes. Then
precision, recall, and F-measure are defined as

P =
TP

TP + FP
,R =

TP

TP + FN
,F =

2PR

(P +R)
, (2)

where TP (true positives) is the number of correctly tran-
scribed notes, FP (false positives) is the number of re-
ported notes not in the ground-truth, and FN (false nega-
tives) is the number of ground-truth notes not reported .

Although note offest is not used in determining correct
notes, we do measure the Average Overlap Ratio (AOR)
between correctly transcribed notes and their correspond-
ing ground-truth notes. It is defined as

AOR =
min(offsets)−max(onsets)

max(offsets)−min(onsets)
(3)

AOR ranges between 0 and 1, where 1 means that the tran-
scribed note overlaps exactly with the ground-truth note.

To see the improvement of different stages of the pro-
posed system, we also evaluate the system using frame-
level measures. Again, we use precision, recall, and F-
measures defined in Eq. (2), but here the counts are on the
pitches instead of notes. A pitch is considered correctly
transcribed if its frequency is within a quarter tone from a
ground-truth pitch in the same frame.

3.3 Comparison Methods

3.3.1 Benetos et al.’s System

We compare our system with a state-of-the-art note-level
transcription system proposed by Benetos et al. [3]. This
system first uses shift-invariant Probabilistic Latent Com-
ponent Analysis (PLCA) to decompose the magnitude spec-
trogram of the music audio with a pre-learned dictionary
containing spectral templates of all semitone notes of 13
kinds of instruments (including the four kinds used in the
Bach10 dataset). The activation weights of the dictionary
elements provide the soft version of the frame-level tran-
scription. It is then binarized to obtain the hard version
of the frame-level transcription. Note-level transcription
is obtained by connecting consecutive pitches, filling short
gaps between pitches, and pruning short notes.
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Figure 3. Note-level transcription performances.

The author’s own implementation is available online to
generate the soft version frame-level transcription. We then
implemented the postprocessing steps according to [3]. Since
the binarization threshold is very important in obtaining
good transcriptions, we performed a grid search between 1
and 20 with a step size of 1 on the trio pieces. We found
12 gave the best note-level F-measure and used it in all ex-
periments. The time threshold for filling and pruning were
set to 100 ms, same as the other comparison methods. We
denote this comparison system by “Benetos13”.

3.3.2 Klapuri’s System

Klapuri’s system [11] is a state-of-the-art general-purposed
frame-level transcription system. It employs an iterative
spectral subtraction approach. At each iteration, a pitch
is estimated according to a salience function and its har-
monics are subtracted from the mixture spectrum. We use
Klapuri’s original implementation and suggested param-
eters. Since Klapuri’s system does not output note-level
transcriptions, we employ the preliminary note tracking
stage in our system to convert Klapuri’s frame-level tran-
scriptions into note-level transcriptions. We denote this
comparison system by “Klapuri06+”.

3.4 Results

Figure 3 compares the note-level transcription performance
of the preliminary and final results of the proposed system
with Benetos13 and Klapuri06+. It can be seen that the
precision of the final transcription of the proposed system
is improved significantly from the preliminary transcrip-
tion for all polyphony. This is accredited to the note sam-
pling stage of the proposed system. As shown in Figure
2, note sampling removes many spurious notes and leads
to higher precision. On the other hand, the recall of the
final transcription is just slightly decreased (about 3%),

Figure 4. Frame-level transcription performances.

which means most correct notes survive during the sam-
pling. Therefore, the F-measure of the final transcription
is significantly improved from the preliminary transcrip-
tion for all polyphony, leading to a very promising per-
formance on this dataset. The average F-measure on the
60 duets is about 79%, which is about 35% higher than
the preliminary result in absolute value. The average F-
measure on the 10 quartets is about 64%, which is also
about 22% higher than the preliminary transcription.

Compared to the two state-of-the-art methods, the final
transcription of the proposed system also achieves much
higher F-measure. In fact, the preliminary transcription is
a little inferior to Benetos13. However, the note sampling
stage makes the final transcription surpass Benetos13.

In terms of average overlap ratio (AOR) of the correctly
transcribed notes with the ground-truth notes, both prelim-
inary and the final transcription of the proposed system and
Benetos13 achieve a similar performance, which is about
80% for all polyphony. This is about 5% higher than Kla-
puri06+. It is noted that 80% AOR indicates a very good
estimation of the note lengths/offsets.

Figure 4 presents the frame-level transcription perfor-
mance. In this comparison, we also include the MPE re-
sult which is the output of Stage 1. There are several in-
teresting observations. First of all, similar to the results
in Figure 3, the final transcription of the proposed system
improves from the preliminary transcription significantly
in both precision and F-measure, and degrades slightly in
recall. This is accredited to the note sampling stage. Sec-
ond, preliminary transcription of the proposed system has
actually improved from the MPE result in F-measure. This
validates the filling and pruning operations in the second
stage, although the increase is only about 3%. Third, the
final transcription of the proposed system achieves signif-
icantly higher precision and F-measure than the two com-
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parison methods, leading to about 91%, 88%, and 85% F-
measure for polyphony 2, 3, and 4, respectively. This per-
formance is very promising and may be accurate enough
for many other applications.

4. CONCLUSIONS AND DISCUSSIONS

In this paper, we built a note-level music transcription sys-
tem based on an existing frame-level transcription approach.
The system first performs multi-pitch estimation in each
time frame. It then employs a preliminary note tracking to
connect pitch estimates into notes. The key step of the sys-
tem is to perform note sampling to generate a number of
subsets of the notes, where each subset is viewed as a tran-
scription candidate. The sampling was based on the note
length and note likelihood, which was calculated using the
single-pitch likelihood of pitches in the note. Then the
transcription candidates are evaluated using the multi-pitch
likelihood of simultaneous pitches in all the frames. Fi-
nally the candidate with the highest likelihood is returned
as the system output. The system is simple and effective.
Transcription performance was significantly improved due
to the note sampling and likelihood evaluation step. The
system also significantly outperforms two other state-of-
the-art systems on both note-level and frame-level mea-
sures on music pieces with polyphony from 2 to 4.

The technique proposed in this paper is very simple, but
the performance improvement is unexpectedly significant.
We think the main reason is twofold. First, the note sam-
pling step lets us explore the transcription space, especially
the good regions of the transcription space. The single-
pitch likelihood of each estimated pitch plays an important
role in sampling the notes. In fact, we think that prob-
ably any kind of single-pitch salience function that have
been proposed in the literature can be used to perform note
sampling. The second reason is that we use the multi-
pitch likelihood, which considers interactions between si-
multaneous pitches, to evaluate these sampled transcrip-
tions. This is important because notes contained in a sam-
pled transcription must have high salience, however, when
considered as a whole, they may not fit with the audio as
well as another sampled transcription. One limitation of
the proposed sampling technique is that it can only remove
false alarm notes in the preliminary transcription but not
adding back missing notes. Therefore, it is important to
make the preliminary transcription have a high recall rate
before sampling.
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