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Pitch in Music

@ Pitch - fundamental frequency of musical note from an instrument

Spectrogram

Waveform g el T e

@ Pitch changes with time as notes and vibrato change
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-
Multi-pitch Analysis

@ Multiple music instrument ensemble has pitches corresponding to
notes from each instrument - multiple pitches

Spectrogram

by

Waveform
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Introduction: Multi-pitch Estimation and Streaming

Multi-pitch Analysis

@ Multi-pitch Estimation (MPE): Estimate instantaneous pitches and
polyphony
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o Multi-pitch Streaming (MPS): Organize the estimated pitches into
streams corresponding to individual sound sources



Introduction: Applications of Multi-pitch Analysis

o Multipitch analysis
MIR: Music transcription, source separation, melody extraction
Speech recognition: Multi-talk recognition, prosody analysis

Musicology: Scholarly analysis

Music education: Teach music to amateurs
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-
Contribution: Augmenting MPE/MPS with Video

e MPE/MPS based on audio alone challenging
@ Video modality provides valuable information
@ Multimedia research has gained prominence
@ Limited video informed work till date

Feature
Extraction/
Processing

Analysis

I

MPE/MPS
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-
Visually Informed Multi-pitch Analysis: Framework

@ Video module — play/non-play (P/NP) activity

@ P/NP activity — instantaneous polyphony (for MPE)
helps organize pitches to active sources (for MPS)

Video
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P/NP detection:

Input video

Optical flow

High motion region

Framework

GMM based player detection

[ Player1 ] [ Plarer2]
——]
Support
Featufe vector
Extraction machine

P/NP
labels

Histogram threshold based
high motion region detection

24



Multipitch Analysis: Prior Audio-Only Multi-pitch
Estimation [2]

. MLE based
A.Udlo Peal§ frequency Threshold — MPE
mixture detection . .
estimation

0 = arg maz£(0 | 6)

0cO®
£(9) - £peak: (9) . v{jnon—peak (9)

0 — Setof fundamental frequency
O — Obs. from power spectrum

©® — space of possible sets of 0



|
Multipitch Analysis: Video Based Multi-pitch Estimation

@ P/NP labels inform instantaneous polyphony
@ Instantaneous polyphony used as threshold

. MLE based
Audio Peak N
mixture detection freguenpy MPE
estimation

_______________________________________________________________________
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Multipitch Analysis: Prior Audio-Only Multi-pitch
Streaming [3]

A_udio Objective function:- Maintain timbre consistency
Mixture y

S =33 s el

m=1t;ESm MPS
Must-link constraints:- Pitches close in time/frequency

Cannot-link constraints:- Pitches in same time frame

Constrained Clustering Algorithm

Start
Pitch Pick rand. Find swap set obiective
order pitch/ Swap and get reclluced'7
init. stream cluster ’
Constraints
satisfied by Best
best cluster cluster
t; — timbre feature vector for it pitch
trev. cluster o cm — centroid of timbre for stream Sy,

=best cluster M — number of streams

II — partition into M streams
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\ Objective function:- Maintain timbre consistency
: H M
2
FI) =37 > It~ cul

m=1t;E€Sm,
Must-link constraints:- Pitches close in time/frequency

Multipitch Analysis: Video Based Multi-pitch Streaming

Cannot-link constraints:- Pitches in same time frame

Constrained Clustering Algorithm

Pick rand, Find swap| .-~ .Y [Swap/get objective
pitch/ set [ S reduced?
stream cluster y
Constraints N
satisfied by Best
best cluster cluster
t; — timbre feature vector for it" pitch
prev. cluster
=best cluster End

cm — centroid of timbre for stream S,,
M — number of streams

II — partition into M streams
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Experimental Results

@ Assessment on subset of URMP ground-truth dataset [4]
e Focus on string ensembles including violin, viola, cello, and bass
e 11 videos featuring 3 duets, 2 trios, 4 quartets, and 2 quintets

e P/NP SVM classifier used with radial basis function (RBF) kernel
e P/NP evaluation: leave one out cross validation error




Experimental Results: Performance Metrics

@ P/NP detection accuracy:

#corr predicted labels w.r.t ground truth

P/NP detection acc = #labels

o MPE accuracy:

F£corr est pitch
Ftest pitch + #gt pitch — F#corr est pitch

MPE acc =

@ MPS accuracy:

#corr est & str pitch

MPS =
ace #corr est & str pitch + #pitch in est not gt + #pitch in gt not est

corr — correct, est—estimated, str—streamed,gt—ground truth
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Experimental Results: P/NP Detection and MPE Accuracy

Piece No P/NP Detection Accuracy (%) MPE Accuracy (%)
| P1 P2 | P3 | P4 | P5 | Audio | Video PNP | GT PNP
#1 97.4 | 91.5 - - - 70.2 83.6 85.1
# 2 93.6 | 93.3 - - - 68.7 72.2 74.2
# 3 81.1 713 - - - 58.5 62.7 70.0
# 4 925|914 | 78.4 - - 59.8 65.9 68.6
#5 93.9 1929 | 89.4 - - 75.0 76.7 79.0
# 6 83.4 | 88.4 | 78.6 | 73.4 - 49.5 52.3 56.3
H#7 69.3 | 73.6 | 75.1 | 70.1 - 52.1 52.0 59.0
# 8 90.0 | 90.9 | 84.6 | 86.4 - 62.2 62.3 66.6
#9 93.1 | 955 | 82.4 | 91.5 - 62.2 63.3 65.7
# 10 019 (923|885 |94.1(91.2 | 47.4 52.3 53.3
# 11 74.2 | 75.1|70.0 | 753|625 | 46.4 44.0 48.8

Table: Results of video-based Play/Non-play detection and MPE accuracy of the
11 test pieces.
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Experimental Results: Comparison of MPE Accuracies
Audio/Video/Ground Truth

@ Experiments on 53 duets, 38 trios and 14 quartets
0 60.3 66.3 729 585 598 648 53.0 541 57.7
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Figure: Boxplot of MPE accuracy grouped by polyphony on all subsets derived
from the 11 pieces, comparing the baseline audio-based method (dark gray),
proposed visually informed method (light gray), and the incorporation of
ground-truth PNP labels (white). The number above each box shows the mean
value of the box. 16 /24



Experimental Results: Comparison of MPS Accuracies
Audio/Video/Ground Truth

@ Experiments on 53 duets, 38 trios and 14 quartets
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Figure: Boxplot of MPS accuracy grouped by polyphony on all subsets derived
from the 11 pieces, comparing the baseline audio-based method (dark gray),
proposed visually informed method (light gray), and the incorporation of
ground-truth PNP labels (white). The number above each box shows the mean
value of the box. 17/24



Conclusion

@ We demonstrated a novel technique of visually informed multi-pitch
analysis for string ensembles
@ Video based play/non-play detection technique was used

e To obtain concurrent pitches in each time frame (MPE)
o To assign the estimated pitches to corresponding sound sources (MPS)

@ Experimental results show

o Video based P/NP detection has accuracy of 85.3%
e Statistically significant improvement on both the MPE and MPS
accuracy at a significance level of 0.01 in most cases

e With improvement in underlying MPE/MPS integration with P/NP,
better results can be obtained
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Pieces Used in Experiments

Piece number Piece Name Polyphony Performance Style Description
. Moti i t ture.
#1 01_Jupiter_vn_vc 2 otion IS €asy 1o capture.
All players are playing at most time
Moti i ture.
#2 02_Sonata_vn_vn 2 otion 1s easy. to capture .
All players are playing at most time
Some plucking motion for the
#3 19_Pavane_cl_vn_vc 3 e
violin and cello
Motion is easy to capture for player 1 and 2.
24 12 Spring_vn vn vc 3 For player 3, some soft ?rtlculatlon is
from slow motion,
which may be difficult to capture
45 13.Hark_vn_vn_va 3 Motion is easy to capture. .
All players are playing at most time
. Motion i .
#6 24 _Pirates_vn_vn_va_vc 4 otion is easy. to capture .
All players are playing at most time
. A lot of repeated notes
7 26_King_vn_vn_va_ 4 o
# 6-King.vn.vn.va.ve where the bow motion is slight
Motion is easy to capture.
2_F _vn_vn_va_ 4 . ) .
#8 32 Fugue.vn.vn.va.ve Different players play alternatively sometimes
#9 36_Rondeau_vn_vn_va_vc 4 Motion is casy to capture. .
All players are playing at most time.
Moti i ts ture.
#10 38_Jerusalem_vn_vn_va_vc_db 5 otion 15 easy 1o capture.
All players are playing at most time.
f: | | i
211 44 K515 0N vh_vava.ve 5 Some fast notes are p ayed.by .egato bowing,
where the bow motion is slow.

Table: Pieces used in the experiment with polyphony and performance style21/24



Problematic Pieces
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Figure: MIDI plot for segments from pieces (#7) 26-In hall of mountain king
(top) and (#11) 44-K515 (bottom) which have limited bow motion
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-
Audio Based Multipitch Analysis

Multi-pitch Estimation
o Likelihood method [2]
@ Model peak/non-peak region of spectrum

@ Interative greedy search — estimate pitch one by one

Frequency Pitch
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Audio Based Multipitch Analysis

Multi-pitch Streaming

e Constrained clustering method [3]

o Constraints on timbre consistency

@ Constraints on time-frequency relationship

Pitch

Pitch

MPS
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