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ABSTRACT

Multi-pitch analysis of polyphonic music requires estimating con-
current pitches (estimation) and organizing them into temporal
streams according to their sound sources (streaming). This is chal-
lenging for approaches based on audio alone due to the polyphonic
nature of the audio signals. Video of the performance, when avail-
able, can be useful to alleviate some of the difficulties. In this paper,
we propose to detect the play/non-play (P/NP) activities from mu-
sical performance videos using optical flow analysis to help with
audio-based multi-pitch analysis. Specifically, the detected P/NP
activity provides a more accurate estimate of the instantaneous
polyphony (i.e., the number of pitches at a time instant), and also
helps with assigning pitch estimates to only active sound sources. As
the first attempt towards audio-visual multi-pitch analysis of multi-
instrument musical performances, we demonstrate the concept on 11
string ensembles. Experiments show a high overall P/NP detection
accuracy of 85.3%, and a statistically significant improvement on
both the multi-pitch estimation and streaming accuracy, under paired
t-tests at a significance level of 0.01 in most cases.

Index Terms— Multi-pitch estimation, streaming, audio-visual
analysis, source separation, constrained clustering, SVM classifier

1. INTRODUCTION

Multi-pitch analysis of polyphonic music is important in many music
information retrieval (MIR) tasks including automatic music tran-
scription, music source separation, and audio-score alignment. It can
be performed at different levels: Multi-pitch Estimation (MPE) is to
estimate concurrent pitches and the number of pitches (polyphony)
in each time frame; Multi-pitch Streaming (MPS) goes one step fur-
ther to also assign the pitch estimates to different sound sources.

There exist various audio-based methods for multi-pitch analy-
sis. For MPE, methods include auto-correlation [1] and Bayesian in-
ference [2] in the time-domain, and harmonic amplitude summation
[3] and peak/non-peak modeling [4] in the frequency domain. For
MPS, methods often rely on modeling the timbre of sound sources
to organize pitch estimates. Supervised methods, which learn timbre
models from isolated training excerpts of sources, employ Bayesian
models [5], hidden Markov models [6], and probabilistic latent com-
ponent analysis (PLCA) [7]. Unsupervised methods that infer tim-
bre models of sound sources directly from the mixture audio are also
proposed [8, 9, 10]. The common idea is to cluster pitch estimates
that have similar timbre features into the same stream, while the clus-
tering process is often aided by constraints that model the locality
relations between pitches.

These state-of-the-art audio-based methods, however, cannot
achieve satisfactory performance for many applications as yet. This
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Fig. 1. Proposed framework for enhancing multi-pitch analysis using
video-based play/non-play activity detection.

is due to the core challenge that polyphonic audio signals have: sig-
nals of different sound sources mix together and interfere with each
other. More specifically, multi-pitch estimation needs to estimate the
number of mixed sound sources at each time instant (instantaneous
polyphony). This is difficult for audio-based approaches due to large
variety of harmonic relations and timbre combinations of concurrent
pitches. Furthermore, even if the instantaneous polyphony were cor-
rectly estimated in each frame, identifying which sources are active
in these frames for the estimated pitches to assign to is also challeng-
ing purely from audio. These issues, however, could be alleviated
when videos are available. Specifically, availability of video can
help identify Play/Non-play (P/NP) activities of instrument players,
helping with the estimation of the instantaneous polyphony and the
detection of active sound sources for pitches to be assigned.

Advances in the field of multimodal signal analysis have pro-
pelled the use of visual features along with audio features to solve a
variety of problems like information retrieval [11], multimedia con-
tent authoring [12], sentiment analysis [13], shot change detection
[14], and audio-visual feature extraction [15]. In the field of mu-
sic performance analysis, visual information has been exploited to
detect instrument playing activities in an orchestra for audio-score
alignment [16]. Video analysis has also been employed to track the
fret-board and movement of hands to transcribe guitar performances
[17]. However, to date, there is remarkably little visually informed
work on the fundamental problem of multi-pitch analysis.

In this paper, we build upon our prior work on audio-based MPE
[4] and MPS [9] to propose the first method that leverages visual in-
formation for multi-pitch analysis of string ensembles. Fig.1 shows
the system overview. The video analysis module detects players
as well as their P/NP activity through an optical-flow-based motion
analysis in each video frame. The instantaneous polyphony of each
audio frame is then derived from the P/NP activity and is used to
inform the audio-based MPE module. The P/NP information is also
passed to the MPS module so that estimated pitches are only allowed
to be assigned to active players in each frame. Experiments on 11
string ensembles show that the proposed video-based P/NP detec-
tion achieves a high overall accuracy of 85.3%. The incorporation of
these detected P/NP results to our audio-based baselines results in a
statistically significant improvement on both the MPE and the MPS
accuracy at a significance level of 0.01 in most cases.
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Fig. 2. Video analysis for P/NP activity detection.

2. PROPOSED METHOD

2.1. Play/Non-play Activity Detection

We employ optical flow estimation and supervised classification to
detect P/NP activities of players in each video frame. Figure 2 sum-
marizes the analysis workflow.

2.1.1. Optical Flow Estimation

Optical flow [18], which estimates the motion field using the ob-
served pattern of brightness displacements from frame to frame,
forms the basis of our motion analysis. The assumption that the
brightness is preserved as the pixels get displaced due to motion in
the scene, yields the classic optical flow equation [19]

∂I

∂x
u+

∂I

∂y
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∂I

∂t
= 0, (1)

where (x, y) represent the spatial (pixel) coordinates, t denotes time,
and I = I(x, y, t) denotes the observed spatio-temporal pattern
of image intensity and (u, v) = [ dx

dt
, dy
dt

] represents the flow vec-
tor in horizontal (x) and vertical (y) directions. The collection of
flow vectors over spatial extent of the frame forms the motion field
ut(x, y), vt(x, y), where t indexes the frames. Optical flow tech-
niques estimate the flow field for each frame by minimizing an en-
ergy function that combines a data term based on (1) with regulariza-
tion terms that ensure smoothness of the flow field. In this paper, we
adopt the approach of [20] which improves upon the classical objec-
tive function of [19, 21] by incorporating flow and image boundary
information in the regularization function and provides highly accu-
rate motion field estimations.

2.1.2. Player Detection
Instrument play movements are typically the dominant motion in the
video. For a given camera viewpoint, these movements localize in
spatial regions corresponding to individual players across the span of
temporal frames. We therefore identify distinct regions of significant
motion in the video to estimate the locations of the players. Specifi-
cally, we compute a temporally aggregated motion magnitude func-
tion for each spatial location as the sum of the optical flow motion
field magnitudes over the frames. The motion magnitude function is
modeled as a mixture of Gaussians, and a rough estimate of the lo-
cations of the players is obtained by identifying the spatial locations
that associate with individual components (with high probability).

2.1.3. High Motion Region Detection
Within the spatial regions corresponding to a string player’s move-
ments, pixels and time intervals with high motion (e.g., the bowing
hand) are indicative of the P/NP activity. Therefore, we detect high
motion regions (pixels) from the initial estimate of individual player
locations obtained in the previous step. Given that different players
(instruments) exhibit different degrees of motion in the video, we
use an adaptive threshold on the motion magnitude for each player,
using a threshold equal to the temporal mean + twice standard devi-
ation of the histogram of the flow vector magnitude. A sample frame

Player	1 Player	2

Fig. 3. Sample frame from the performance video (left) and the
player detection results (right) with the detected high motion regions
in green, detected players in white and the background in black.

is shown in Fig. 3 where we can see clusters of high motion regions
(green) within the detected players (white) who are detected from
the background (black).

2.1.4. Feature Extraction and Classification
We train a support vector machine classifier (SVM) to classify P/NP
activities of each player in each video frame. A 20-dimensional fea-
ture vector is extracted from the motion vectors of the detected high
motion pixels for each player. These features include: (a) Mean,
variance, and standard deviation of the flow vectors in x and y direc-
tions separately. (b) Mean, variance, and standard deviation of the
flow vector magnitude. (c) Sum of the motion vector magnitude in
each region of the frame characterizing the total amount of motion.
(d) The major directions of the motion present in each region, char-
acterized by the eigenvectors and eigenvalues of the Principal Com-
ponent Analysis. (e) Statistics from the Gray Level Co-occurrence
Matrix (GLCM), which is obtained from the flow vector magnitude
in the high motion region detected in the previous step. The statistics
include (1) Energy, measuring the orderliness or regularity of flow
vector magnitude, (2) Correlation, measuring the joint probability
of the occurrence of flow vector magnitudes, (3) Contrast, measur-
ing local variation of flow vector magnitude, and (4) Homogeneity,
measuring similarity of flow vector magnitudes.

To train the SVM, we collect solo string performances that are
distinct from the test set. The ground-truth P/NP labels for the train-
ing pieces are obtained from audio-based single-pitch detection re-
sults followed by manual corrections: If a pitch is detected in the
audio of a video frame, then the frame is annotated as Play; other-
wise, it is annotated as Non-play. To parameterize the SVM training
algorithm we, (a) set the kernel function parameter to radial basis
function kernel (RBF), (b) set the kernel scale parameter to auto-
matic scaling. The relative amount of play/non-play classes in the
training data varied from 76%-80% for play labels and 20%-24%
for non-play labels.

2.2. Multi-pitch Estimation
2.2.1. Audio-based MPE

The proposed method is built upon an audio-based method proposed
in [4]. It is a maximum-likelihood approach modeling both spectral
peaks and non-peak regions of the audio frame to be analyzed. As-
sume that the audio frame has N monophonic sound sources and let
θ be a set of N fundamental frequencies. Fundamental frequency of
each source is estimated by maximum likelihood estimation,

θ̂ = arg max
θ∈Θ

(O|θ) , (2)

where Θ denotes the space of all possible sets of fundamental fre-
quencies, and O is the observation, i.e., magnitude spectrum. This
method estimates pitches in an iterative way from more prominent
pitches to less prominent ones using a greedy strategy. After pitches
and polyphony are estimated in each frame, a post-processing step is



employed to smooth the estimates within several neighboring frames
to remove inconsistent estimation errors.

2.2.2. Visually Informed MPE
An important disadvantage of this audio-based MPE method (and
other audio-based methods as well) is that the instantaneous polyphony
estimation is not that accurate. For low-polyphony pieces (e.g., duets
and trios) it tends to overestimate, while for high-polyphony pieces
(e.g., quartets and above) it tends to underestimate. This is due to the
polyphonic nature of string ensembles and the harmonic relations
among the sources. The P/NP labels detected from the visual scene,
on the other hand, can provide a more accurate estimation for the
instantaneous polyphony. We therefore count the number of active
players in each video frame and use it to replace the audio-based
polyphony estimates in the corresponding audio frames. To account
for the possible errors in the P/NP detection in individual frames,
we still adopt the post-processing module to refine the pitch and
polyphony estimates within neighboring frames.

2.3. Multi-pitch Streaming

2.3.1. Audio-based MPS

We also build the visually informed MPS algorithm upon our prior
audio-based MPS framework [9]. It formulates the MPS problem as
a constrained clustering problem. It takes pitch estimates in individ-
ual frames (MPE results) as input and clusters them into different
pitch streams. Two kinds of constraints are considered: must-links
and cannot-links. Must-link constraints are added to pitches that are
close in both time and frequency. Cannot-link constraints are used to
prevent assigning pitches in the same time frame to the same source.
Pitches from the same source have similar timbre features, so the
objective function is designed to minimize the timbre inconsistency
of pitches within the same stream as

f (Π) =

M∑
m=1

∑
ti∈Sm

‖ti − cm‖2 , (3)

where Π is the clustering of pitches, M represents the number of
monophonic sound sources, ti denotes the timbre feature vector of
the i-th pitch, and cm is the centroid of timbre features in stream Sm.

An iterative algorithm was proposed to solve this constrained
clustering problem in [9]. After an initialization, in each iteration
the clustering is updated to decrease the objective function while
satisfying all the constraints that have already been satisfied. The
new clustering is found through a swap operation: swapping cluster
labels of two streams within a swap set. The swap set is defined
as a connected subgraph of the pitches between two clusters using
the already satisfied constraints as edges. If the swap operation is
accepted (i.e., it decreases the objective function), then the set of
already satisfied constraints is updated to all constraints satisfied by
the new clustering. The algorithm was proven to converge.

2.3.2. Visually Informed MPS

To design the visually informed MPS system, we inject the P/NP
information obtained from the video into the audio-based framework
to prevent assigning pitches to non-playing players. The algorithm is
described in Algorithm 1, where ‘*’ indicates the changes from the
audio-based algorithm [9] for incorporation of the P/NP information.

As shown in the algorithm, the P/NP information is incorporated
at two places. First, during the clustering initialization, estimated
pitches are sorted in a descending order and are assigned to only the
active performers from high-pitched instruments to low-pitched in-
struments. Second, when updating the clustering through the swap

operations, only swaps that satisfy the P/NP constraints are accepted.
The satisfaction criterion is that for each source in the swap set,
among the frames that the source has a pitch after the swap oper-
ation, at least 50% of the frames are labeled as Playing according to
the P/NP information. This criterion prevents the algorithm from as-
signing too many pitches to an inactive source during the clustering
update processing. We chose this threshold to account for possible
errors in the P/NP detection results. As a preliminary study, we did
not investigate the effect of this parameter on the MPS results.

Algorithm 1: Visually informed MPS algorithm. ’∗’ indicates
places of the incorporation of the P/NP information.
M - the number of monophonic sound sources
PNP - the binary P/NP matrix indicating which player is

playing at which frame (1-playing, 0-not playing)

begin
* Initialization:Assign pitches to only active players in

the pitch-descending order; t← 0;
repeat

t← t+ 1;
fmax ← f(Πt−1);
Πt ← Πt−1;
while fmax == f(Πt−1) & not all pitches
p1, ..., pN are traversed do

Randomly pick pn which is in stream Sm and
not be replaced;

for j = 1 : M do
Find the swap set of pn between Sm and
Sj ;

* if PNP is satisfied in the swap set then
Do the swap to get a new clustering Πs;
if f(Πs) < fmax then

fmax ← f(Πs);
Πt ← Πs;

end
end

end
end
CT = constraints satisfied by Πt;

until Πt = Πt−1;
Return Πt and Ct;

end

3. EXPERIMENTS

3.1. Dataset

We evaluate the proposed system on the URMP dataset1 [22]. Each
piece was assembled (mixed for audio and composed for video) from
isolated recorded but well coordinated performances of individual
instrumental tracks. We selected all the string-instrument (violin, vi-
ola, cello, and bass) pieces which include 3 duets, 2 trios, 4 quartets
and 2 quintets. Video files are downsampled to 240P for optical flow
estimation. Note that as an initial demonstration here we only eval-
uate on a few pieces due to the lack of large audio-visual datasets.

3.2. Evaluation of Play/Non-play Activity Detection

Since we have only 11 videos, we adopt a training strategy where
the piece to be evaluated is considered a test piece and the remaining

1www.ece.rochester.edu/projects/air/projects/datasetproject.html



Piece No. P/NP Detection Accuracy (%) MPE Accuracy (%)
P1 P2 P3 P4 P5 Audio Video PNP GT PNP

# 1 97.4 91.5 - - - 70.2 83.6 85.1
# 2 93.6 93.3 - - - 68.7 72.2 74.2
# 3 81.1 71.3 - - - 58.5 62.7 70.0
# 4 92.5 91.4 78.4 - - 59.8 65.9 68.6
# 5 93.9 92.9 89.4 - - 75.0 76.7 79.0
# 6 83.4 88.4 78.6 73.4 - 49.5 52.3 56.3
# 7 69.3 73.6 75.1 70.1 - 52.1 52.0 59.0
# 8 90.0 90.9 84.6 86.4 - 62.2 62.3 66.6
# 9 93.1 95.5 82.4 91.5 - 62.2 63.3 65.7
# 10 91.9 92.3 88.5 94.1 91.2 47.4 52.3 53.3
# 11 74.2 75.1 70.0 75.3 62.5 46.4 44.0 48.8

Table 1. Results of video-based Play/Non-play detection and MPE
accuracy of the 11 test pieces.

videos are considered as the training set from which the features are
extracted to form training and test feature matrix whereas for the
training and test labels we use the ground truth P/NP information
from the annotated audio file. The training feature matrix with the
training label is fed into the SVM training algorithm to develop a
model which is used on the test feature matrix to get the predicted
labels and the predicted labels are compared with test labels to find
a match which is used as a measure of accuracy. The left half of
Table 1 shows the video-based P/NP detection accuracy for all 11
videos. We can see good match between predicted labels and the
ground truth test labels which has resulted in an average accuracy
level 85.3% for the pieces. For piece #7 and #11, as we can observe,
the accuracy has decreased because of the limited bowing motion
due to the nature of the composition of the two pieces. Higher the
accuracy, higher is the probability of an improvement on multi-pitch
estimation and streaming accuracy.

3.3. Evaluation of Multi-pitch Estimation

For audio analysis, we first evaluate the multi-pitch estimation re-
sults using the MPE accuracy measure proposed in [23] with the er-
ror tolerance of one quarter tone. The right half of Table 1 lists all of
the 11 testing pieces and compares the audio-based baseline method
with the proposed visually informed method. For almost all of the
testing pieces, the proposed method achieves prominent improve-
ments (13% on the first piece) based on the audio-based method. The
MPE accuracy drops when the polyphony number increases, and the
improvements become less pronounced when the P/NP detection ac-
curacy decreases. For 7th and 11th pieces the proposed approach
even drops from baseline method due to the relatively low accuracy
of P/NP detection, which supports our analysis in Sec. 3.2. We fur-
ther add another testing group where the ground-truth P/NP labels
are incorporated into the MPE process. This gives a upper bound
of the MPE accuracy improvement by using a perfect visual activity
detection module.

To further prove the effectiveness of the proposed approach, we
also create more subsets using the 11 pieces for a statistical evalua-
tion. We arrange all possible track combinations within each piece.
For the example of a quartet, we can further arrange 6 duets and
4 trios using the 4 original tracks. This operation on all of the 11
pieces totally results in 53 duets, 38 trios, 14 quartets and 2 quin-
tets, on which the average increase of the MPE accuracy from the
baseline method to the proposed visual-based method is 3.71%. We
group all these subsets by polyphony (excluding the 2 quintets) and
show the boxplot of MPE accuracy in Fig. 4. The improvements
of the first two polyphony groups are statistically significant under a
paired t-test with p < 10−19 and p < 10−3, respectively. The im-
provement for quartets is not statistically significant under the same
test at the significance level of 0.05.

M
P

E
 A

cc
u
ra

cy
 (

%
)

30

40

50

60

70

80

90
60.3 66.3 72.9

Duets

58.5 59.8 64.8

Trios

53.0 54.1 57.7

Quartets

Baeline audio-based

Visually-informed

GT PNP-informed

Fig. 4. Boxplot of MPE accuracy grouped by polyphony on all sub-
sets derived from the 11 pieces, comparing the baseline audio-based
method (dark gray), proposed visually informed method (light gray),
and the incorporation of ground-truth PNP labels (white). The num-
ber above each box shows the mean value of the box.
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method (dark gray), proposed visually informed method (light gray),
and the incorporation of ground-truth PNP labels (white). The num-
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3.4. Evaluation of Multi-pitch Streaming

We evaluate the proposed visually informed MPS system on the
same derived track combinations from the 11 pieces. The criterion
for a pitch to be considered correctly streamed needs to satisfy both
the frequency deviation condition and the stream assignment con-
dition: it should deviate less than a quarter tone from the ground-
truth pitch in the stream that it is assigned to [9]. Fig. 5 shows the
boxplot of the MPS accuracy of the three comparison methods on
three polyphony groups. It can be seen that the visually informed
approach improves over the audio-based baseline consistently over
all three groups, reaching close to the ground-truth P/NP-informed
upper bound. A paired t-test shows that the improvement is statisti-
cally significant for all groups at a significance level of 0.01. Further
analyses show that the improvement is more pronounced when the
pieces have a layered structure (up to 30% improvement), i.e., dif-
ferent tracks come and go at different times. This is intuitive as the
this is when the the video-based P/NP detection is most informative
for streaming.

4. CONCLUSION AND DISCUSSION

In this paper, we propose and demonstrate a framework for visually-
informed multi-pitch analysis of string ensembles. The play/non-
play activity of different players is detected from analysis of the
video and incorporated into the techniques used for multi-pitch esti-
mation (MPE) and multi-pitch streaming (MPS). Our results demon-
strate that, in most cases, the proposed incorporation of visual infor-
mation offers statistically significant improvements (under a paired t-
test) in pitch analysis accuracy over purely audio-based approaches.
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