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Abstract—This letter extends our prior work on context-
dependent piano transcription to estimate the length of the notes
in addition to their pitch and onset. This approach employs convo-
lutional sparse coding along with lateral inhibition constraints to
approximate a musical signal as the sum of piano note waveforms
(dictionary elements) convolved with their temporal activations.
The waveforms are pre-recorded for the specific piano to be tran-
scribed in the specific environment. A dictionary containing multi-
ple waveforms per pitch is generated by truncating a long waveform
for each pitch to different lengths. During transcription, the dic-
tionary elements are fixed and their temporal activations are esti-
mated and postprocessed to obtain the pitch, onset, and note length
estimation. A sparsity penalty promotes globally sparse activations
of the dictionary elements, and a lateral inhibition term penalizes
concurrent activations of different waveforms corresponding to
the same pitch within a temporal neighborhood, to achieve note
length estimation. Experiments on the MIDI aligned piano sounds
dataset show that the proposed approach significantly outperforms
a state-of-the-art music transcription method trained in the same
context-dependent setting in transcription accuracy.

Index Terms—Automatic music transcription (AMT), convolu-
tional sparse coding (CSC), lateral inhibition, offset detection.

I. INTRODUCTION

AUTOMATIC music transcription (AMT) is the process
of inferring a symbolic representation from an audio sig-

nal [1]. It has applications in music education (e.g., providing
feedback to a piano learner), content-based music search (e.g.,
searching songs with a similar bassline), musicological analy-
sis of nonnotated music (e.g., Jazz improvisations), and music
enjoyment (e.g., visualizing the music content).

Pitch, onset, and offset (or, equivalently, note length), are the
three main basic parameters of a musical note. AMT systems
that aim to achieve note-level transcription must estimate these
parameters. Most existing research has focused on pitch and on-
set detection, while considerably less attention has been devoted
to offset detection [1]. However, for many applications, espe-
cially those requiring music notation transcription [2], relatively
accurate note length estimation is essential.
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Many note-level music transcription methods are frame
based, i.e., they attempt to identify pitches in each time frame,
then determine note onsets and offsets through postprocess-
ing [1]. The most popular approaches in this category are based
on spectrogram decomposition, and use either nonnegative ma-
trix factorization (NMF) [3], [4] or probabilistic latent compo-
nent analysis (PLCA) [5], which are numerically equivalent.
To obtain note-level transcription results, a postprocessing step,
such as a median filter or a hidden Markov model (HMM), is re-
quired to estimate note onsets and offsets from frame-level pitch
estimates [6]. Other frame-based methods include deep neural
networks [7]–[10], and probabilistic methods, such as [11]–[15].

In contrast to frame-based methods, note-based methods at-
tempt to directly identify full notes. Piano notes are character-
ized by significant temporal evolution, in both the waveform
and the spectral content. In particular, different partials decay at
different rates, i.e., higher frequency partials decay faster than
lower frequency ones [16]–[18]. Grindlay and Ellis [19] pro-
posed a generalization of PLCA to account for the temporal
evolution of each note. Mysore et al. [20] introduced a vari-
ant of NMF called nonnegative factorial HMM (N-FHMM) to
learn multiple spectral templates for each note and a Markov
chain describing the temporal transition between them. Ewert
et al. [21] recently proposed a dynamic programming variation
of N-FHMM to reduce its high computational cost. This method
has been extended and adapted to piano music transcription by
Cheng et al. [22]. Nonnegative matrix de-convolution (NMD)
as introduced in [23] is capable of modeling the temporal evo-
lution of nonstationary sounds. All these methods are capable
of estimating the note length, but they are generally evaluated
on onset-only estimation [24]. Even the most recent MIREX
contest shows that most algorithms cannot achieve good re-
sults in both onset detection and length estimation (see MIREX
2016 [25]).

In [26] and [27], we proposed a time-domain approach, which
we will refer to as CDW-15 in the following, to address piano
music transcription in a context-dependent setting. CDW-15
approximates the music signal s with the summation of note
waveforms {dm} convolved with their temporal activation co-
efficients {xm}:

arg min
{xm }

1
2

∥
∥
∥

∑

m

dm ∗ xm − s
∥
∥
∥

2

2

+ λ
∑

m

‖xm‖1 (1)

where λ is a regularization constant. The waveform dm of each
individual pitch m is pre-recorded on the same piano in the
same environment as the music signal to be transcribed, and
its length is always truncated to 1s. The �1 regularization term
encourages sparse activations of notes, higher values of λ result
in sparser activations. This approach achieves higher accuracy
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in pitch and onset estimation than the state-of-the-art [6], but it
does not estimate note offsets.

In this letter, we extend CDW-15 to estimate the note length
by using a dictionary containing multiple atoms with different
lengths per pitch, thus creating pitch groups of atoms corre-
sponding to the same pitch. When using multiple atoms per
pitch, we need to avoid concurrent activations of multiple atoms
in the same pitch group. In order to achieve this result, we
impose a lateral inhibition [28] regularization term on the acti-
vation coefficients of atoms in the same pitch group, in addition
to the �1 regularization on all atoms. The lateral inhibition reg-
ularization prevents concurrent activation of multiple atoms in
the same pitch group within a temporal neighborhood. We can
call this property within-group sparsity.

II. STRUCTURED SPARSITY

Standard sparsity assumes a representation that has only a
few nonzero coefficients, but makes no additional assumptions
on how these nonzero coefficients are distributed within the
coefficient vector or matrix. Structured sparsity, in contrast, is
based on the assumption that there is some sort of identifiable
structure to the distribution of these coefficients. This structure
can take many forms, the most common being group sparsity
and joint sparsity [29]. The former requires the assignment of
dictionary atoms to distinct groups, and assumes that only a few
groups are active, but does not require sparse activations within
each group. The latter is defined within a multiple measurement
vector context [30], and assumes that the representations of
different signal vectors share the same or similar pattern of
activations. Both of these types of structure can be promoted by
the use of the �2,1 norm [29].

Structured sparsity has previously been applied to AMT. For
example, in an NMF framework, a dictionary with multiple
atoms per pitch can be learned, in which each atom in the same
group represents a different frame of a long note of a particu-
lar pitch. Group sparsity can be introduced to promote multiple
atoms in the same group to be activated contiguously, i.e., one
after the other. An example of such structured sparsity was in-
troduced by O’Hanlon et al. [31], who used a modified nonneg-
ative basis-pursuit greedy approach. Another example of group
sparsity in an NMF framework was proposed by O’Hanlon and
Plumbley [32] to promote the co-activation of harmonically
related narrow-band atoms. In this case, each group still repre-
sents a single pitch, but each pitch is sliced harmonically, not
temporally as in the previous method.

In this letter, we are interested in limiting the number of
concurrently active atoms inside each group, as each atom rep-
resents a full note. We call this property within-group sparsity.
However, this property alone is not sufficient to achieve a clean
activation matrix and, thus, a good transcription. In order to ob-
tain a good transcription, global sparsity on the activations must
also be promoted.

III. PROPOSED METHOD

The key idea of the proposed method is to jointly estimate
pitch, onset, and duration of notes by using a dictionary con-
taining multiple atoms with different length for each pitch in
the convolutional sparse coding (CSC) framework of (1). To
create the dictionary we truncate the 1-s long template trained

Fig. 1. Activations of the atoms for pitch D5 for the opening of Bach’s Minuet
in G. D5 should be activated twice, at t = 0 and t � 1.6 s. The numbers on the
vertical axis indicate the length of each template. (a) �1 regularization only. (b)
Lateral inhibition regularization only. (c) Combined lateral inhibition and �1
regularizations.

as in CDW-15 [27] to different lengths. This approach is easier
and faster than sampling the same pitch played with different
durations. However, expanding the dictionary does not lead to
satisfying results, as multiple templates in the same pitch group
are activated concurrently, as we can see in Fig. 1(a) at the be-
ginning of the signal and slightly after t = 1.5 s. The reason is
that the �1 regularization in (1) only promotes sparse activations
of all templates across all times, but does not distinguish acti-
vations of templates in the same pitch group from activations of
templates in different pitch groups; moreover, it does not distin-
guish activations that are temporally close from activations that
are temporally apart. While it is possible for a player to play
different notes in a rapid pace, it is unlikely to play the same
note repeatedly too quickly [27]. Therefore, we need a regular-
ization term that distinguishes these activations and penalizes
close activations of templates in the same pitch group.

We propose to use a lateral inhibition [28] regularization term
on the activations of templates in the same pitch group within
a temporal window. The cost of activating atom m at time t is
given by

Γ({xm}) = |xm (t)|

⎡
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⎢
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where G(m) is the pitch group to which atom m belongs, and T
is the length of the temporal window of inhibition. The activation
of atom m at time t will inhibit the activation of all the other
atoms in the same pitch group within the temporal window
around t. The term |xm (t)| needs to be subtracted from the
summation to avoid self-inhibition.

The full regularization term is the summation of all the costs
over all atoms and all time instants, multiplied by a constant μ.
The objective function becomes

arg min
{xm }

1
2

∥
∥
∥
∥
∥

∑

m

dm ∗ xm − s

∥
∥
∥
∥
∥

2

2

+ μ
∑

m

Γ({xm}). (3)

As we can see in Fig. 1(b), this objective function minimizes
the concurrent activations of atoms in the same pitch group and
inside the inhibition time window (50 ms), but the activations are
not globally sparse over time. Moreover, not shown in the fig-
ures, the activations of other groups are also nonsparse. Global
sparsity is a key component of CDW-15, and has been success-
fully applied to AMT for a long time [1]. In order to promote
global sparsity on all activations of all templates, we added a
global �1 norm to the basic lateral inhibition model in (10). The
objective function with both the global �1-norm regularization
and lateral inhibition regularization is

arg min
{xm }
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∥
∥
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dm ∗ xm − s
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+ λ
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‖xm‖1 + μ
∑

m

Γ({xm}). (4)

Using this regularization, as we can see from Fig. 1(c), the ac-
tivation vectors are now sparser and less noisy, and also globally
sparse, as we will show in the experimental section.

IV. ALGORITHM

The simplest form of lateral inhibition structured sparse cod-
ing problem [28] is

1
2
‖Dx − s‖2

2 + |x|T Ω|x| (5)

where D is a dictionary matrix, and Ω is a matrix encoding the
pattern of desired mutual inhibitions. As was pointed out in [28],
if the entries of Ω are nonnegative, we can define w = |x|T Ω,
and write (5) as a weighted basis pursuit denoising (BPDN)
problem

1
2
‖Dx − s‖2

2 + ‖w � x‖1 (6)

where � is the Hadamard product, allowing the problem to be
tackled by modifying a standard algorithm for the BPDN prob-
lem to include iteratively updating the weight vector w, which
depends on the solution variablex. Szlam et al. reported [28] that
good performance was obtained with a fast iterative shrinkage-
thresholding algorithm (FISTA) algorithm. They also proposed
a convolutional form of (5), but applied it to a sufficiently small
s to make it feasible to retain an explicit weighting matrix Ω in
the formulation.

Our innovation with respect to the algorithm is twofold. First,
since we wish to apply the model to a signal s that is far too
large for an explicit weighting matrix Ω to be practical, we have

modified the regularization term so that the lateral inhibition is
specified by the product of a convolution filter determining the
inhibition in time, and a small matrix that determines the inhi-
bition within and between groups of dictionary atoms. Second,
since alternating direction method of multipliers (ADMM) has
been shown to be more effective than FISTA for the convolu-
tional BPDN (CBPDN) problem [33], we modify the ADMM
algorithm proposed in [34] to include the necessary iterative
reweighting. We found experimentally that good results were
obtained by updating the new weight vector w from the primary
variable x rather than from the auxiliary variable introduced in
the variable splitting, and by smoothing this weight vector up-
date by defining it as a convex linear combination of the previous
and new values.

The lateral inhibition regularization terms in (3) and (4) are
rewritten in terms of convolution as

Γ({xm}) =
∑

m

∑

n

cm,n (|xn | ∗ h)T |xm | (7)

where h is the time inhibition window, which is equal to 1
around the origin within a radius of T/2, and cm,n is defined as

cm,n =

{

1 if m �= n and G(m) = G(n)
0 otherwise.

(8)

If we define

ωT
m =

∑

n

cm,n (|xn | ∗ h)T (9)

then (3) can be rewritten as
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{xm }
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∑
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∥
∥
∥
∥

2

2

+ μ
∑

m

ωT
m |xm | (10)

which immediately shows that the regularization is a weighted
�1-norm on xm . Similarly, (4) can be written as

arg min
{xm }
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dm ∗ xm − s

∥
∥
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∥

2

2

+ λ
∑

m

‖xm‖1 + μ
∑

m

ωT
m |xm | . (11)

Finally, the two regularization terms can be combined into a
single term as

arg min
{xm }
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∥
∥
∥
∥

∑

m

dm ∗ xm − s

∥
∥
∥
∥
∥

2

2

+
∑

m

(

λ1 + μωT
m

) |xm | , (12)

where 1 is a row vector comprised of all ones.
The resulting ADMM algorithm1 is very similar to the effi-

cient ADMM algorithm for the CBPDN problem [33], except
for the use of a weighted �1 norm, which requires a minor mod-
ification to the soft-thresholding step [36], and in the need for
recomputing the weight vector at every iteration, as described
above.

1An implementation will be included in a future release of the SPORCO
library [35].
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The raw activation vectors thus obtained must be postpro-
cessed to detect peaks, which correspond to note onsets. This
step is a refinement of the method described in [27], gener-
alized to the extended dictionary. We start by setting all the
activations below a global threshold, currently set at 10% of the
maximum value across the activation matrix X , to 0. Then we
determine all the local peaks in each activation vector. Finally,
we iterate over all the peaks, in order of magnitude starting from
the largest one, and we set to 0 all the activations in the same
pitch group and inside the inhibition window, currently set at
50 ms.

The complexity of the algorithm is dominated by the calcu-
lation of the cost vectors ωm and is O(M 2N log N), where
M is the number of atoms and N is the length of the
signal s.

V. EXPERIMENT

We applied the different models described in Section III to
the first 10 s of the 30 pieces in the ENSTDkCl dataset of MIDI
Aligned Piano Sounds (MAPS) [13]. The limit of 10 s was
determined by the amount of graphics processing unit (GPU)
memory required by the current MATLAB implementation of
the algorithm, however, a longer piece could be transcribed by
segmenting it into 10 s long chunks, as described in our previ-
ous paper [27]. We used a value of λ = 0.05 and μ = 0.5. These
values were empirically tuned on a single piece and then fixed
for the entire dataset. For each piece we calculated precision,
recall, and F-measure with both onset-only and onset-offset cri-
teria [24], with the standard MIREX parameters: Onset tolerance
of 50 ms and offset tolerance of 20% of the correct note length
or 50 ms, whichever is longer. The lengths of the different atoms
in the dictionary for each pitch were chosen to approximate the
distribution of note lengths in MAPS, i.e., higher density for
shorter notes around 100 ms and lower density for longer notes;
we also spaced the durations exponentially in order to maxi-
mize the likelihood of estimating the correct length according
to the onset–offset criterion. The durations were: 39, 58, 88,
132, 197, 297, 444, 666, and 999 ms. We also calculated the
average overlap ratio (AOR) [24]. AOR gives a measure of how
much a correctly returned note overlaps with the correspond-
ing ground-truth note. We compared the proposed method with
several baseline methods: CDW-15, with note lengths fixed at
100 ms; BW-13, a state-of-the-art frame-based method based
on PLCA proposed by Benetos and Weyde [37]; SONIC, a pi-
ano music transcription system based on neural networks [38];
DT-14, a generic music transcription system based on maxi-
mum likelihood by Duan and Temperley [15]; and VBB-10,
an NMF-based transcription system by Vincent et al. [39]. For
all the baseline methods we used the original authors’ imple-
mentation. BW-13 was also trained in the same context of the
proposed method on the isolated notes in the ENSTDkCl dataset
of MAPS. It must be noted that SONIC, VBB-10, and DT-14
cannot be trained in the same context, so the comparison is
biased against these methods.

The average results for the entire dataset are shown in Table I.
We can observe that almost all variants of the CSC-based meth-
ods, except LI (Lateral Inhibition), outperform BW-13, VBB-10
and DT-14 on F-measure for the onset-only criterion; CDW-
15 and �1+LI also outperform SONIC, showing the advantage

TABLE I
AVERAGE RESULTS ON THE FIRST 10 S OF THE 30 PIECES IN THE ENSTDKCL

DATASET OF MAPS (HIGHER VALUES ARE BETTER)

Onset only Onset–offset

Method P R F AOR P R F AOR

BW-13 64.1 59.8 61.2 55.8 19.2 18.2 18.5 81.4
SONIC 78.0 72.0 74.5 58.7 28.5 25.7 26.9 83.4
DT-14 55.2 34.7 41.3 51.7 15.3 9.4 11.3 82.0
VBB-10 52.5 75.7 60.9 38.8 11.5 15.0 12.8 63.6
CDW-15 79.7 83.5 80.8 40.1 17.8 18.0 17.8 68.8
�1 55.4 88.7 65.4 54.6 16.8 25.8 19.5 84.4
LI 42.2 83.7 53.3 55.9 12.5 27.3 16.3 84.8
�1 + LI 77.7 79.6 77.5 54.6 22.3 23.0 22.3 84.5

Bold font indicates the best value in each column.

of the time-domain approach over frequency-domain methods
in this setting. Moreover, �1+LI significantly outperforms both
LI and �1 on F-measure. This supports our analysis that both
within-group and global sparsity are needed. From CDW-15
to �1 F-measure drops significantly for the onset-only crite-
rion but increases slightly for the onset–offset criterion. The
only difference between these two methods is that �1 uses nine
templates per pitch while CDW-15 uses only one template. As
noted, multiple templates can be activated simultaneously in �1
resulting in a lower precision but higher recall, and when onset-
offset criterion is used, the improvement on recall dominates
the decrease on precision. Similarly, from CDW-15 to LI, pre-
cision drops significantly, while recall increases slightly under
the onset-only criterion and significantly under the onset–offset
criterion. However, the drop of precision is due to the false acti-
vation of wrong notes instead of the false activation of multiple
templates of the correct note. Finally, when onset-only criterion
is used, LI+�1 slightly under-performs CDW-15 on F-measure,
but significantly outperforms CDW-15 on AOR; when onset–
offset criterion is used, LI+�1 falls behind SONIC on F-measure
but significantly outperforms CDW-15 on both F-measure and
AOR. Overall, the proposed method with both lateral inhibi-
tion and global sparsity regularization brings the CSC-based
approach to the highest level of performance.

VI. CONCLUSION

In this letter, we extended our prior work on CSC for time-
domain piano transcription in a context-dependent setting. The
proposed method uses multiple templates with different lengths
per pitch to achieve note length estimation. Lateral inhibition
regularization is introduced to ensure that at most one tem-
plate per pitch is activated within an inhibition window. Global
sparsity is achieved through �1 regularization to reduce false
activations of wrong notes. Experiments show that the proposed
method significantly outperforms our prior work and another
state-of-the-art frequency-domain method trained in the same
context.
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