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ABSTRACT

Automatic music transcription aims at transcribing musical
performances into music notation. However, most existing
transcription systems only focus on parametric transcrip-
tion, i.e., they output a symbolic representation in absolute
terms, showing frequency and absolute time (e.g., a piano-
roll representation), but not in musical terms, with spelling
distinctions (e.g., Ab versus Gf) and quantized meter. Re-
cent attempts at producing full music notation output have
been hindered by the lack of an objective metric to mea-
sure the adherence of the results to the ground truth mu-
sic score, and had to rely on time-consuming human eval-
uation by music theorists. In this paper, we propose an
edit distance, similar to the Levenshtein Distance used for
measuring the difference between two sequences, typically
strings of characters. The metric treats a music score as a
sequence of sets of musical objects, ordered by their on-
sets. The metric reports the differences between two music
scores based on twelve aspects: barlines, clefs, key signa-
tures, time signatures, notes, note spelling, note durations,
stem directions, groupings, rests, rest duration, and staff
assignment. We also apply a linear regression model to the
metric in order to predict human evaluations on a dataset of
short music excerpts automatically transcribed into music
notation.

1. INTRODUCTION

Automatic Music Transcription (AMT) is the process of
inferring a symbolic representation of a musical perfor-
mance. Despite four decades of active research, AMT is
still an open problem, with humans being able to achieve
better results than machines [2]. AMT systems can be
broadly classified into two categories according to the cho-
sen symbolic representation: parametric transcription and
music notation transcription. Parametric transcription sys-
tems output a parametric representation of the musical per-
formance, such as an unquantized MIDI pianoroll [14].
This representation is expressed in physical terms, such as
seconds for note onset and duration, and hertz or MIDI
numbers for pitch [7]. It can faithfully represent the mu-
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sical performance, but normally it does not explicitly en-
code high-level musical structures, such as key, meter and
voicing [21]. Music notation transcription systems, on the
other hand, output a common music notation that human
musicians read. This representation is expressed in musi-
cally meaningful terms, such as quantized meter for note
onset and duration, and spelling distinctions (e.g., Ab ver-
sus Gff) for pitch. Compared to parametric transcription,
music notation transcription is generally more desirable for
many applications connecting humans and machines, such
as computational musicological analysis and music tutor-
ing systems. The vast majority of existing AMT methods,
however, are parametric transcription systems.

Researchers have put considerable effort toward build-
ing music notation transcription systems by identifying
musical structures from unquantized parametric represen-
tations, especially MIDI files, from both MIR and cog-
nitive perspectives [20]. Cambouropoulos [3] described
the key components necessary to convert a MIDI per-
formance into music notation: identification of elemen-
tary musical objects (i.e., chords, arpeggiated chords, and
trills), beat identification and tracking, time quantization
and pitch spelling. Takeda et al. [18] describe a Hid-
den Markov Model (HMM) for the automatic transcription
of monophonic MIDI performances. Cemgil [4] presents
a Bayesian framework for music transcription, identify-
ing some issues related to automatic music typesetting
(i.e., the automatic rendering of a musical score from a
symbolic representation), in particular tempo quantization,
and chord and melody identification. Karydis et al. [12]
proposed a perceptually motivated model for voice sep-
aration capable of grouping polyphonic groups of notes,
such as chords or other forms of accompaniment figures,
into a perceptual stream. A more recent paper by Gro-
hganz et al. [11] introduced the concepts of score-informed
MIDI file (S-MIDI), in which musical tempo and beats are
properly represented, and performed MIDI file (P-MIDI),
which records a performance in absolute time. The paper
also presented a procedure to approximate an S-MIDI file
from a P-MIDI file — that is, to detect the beats and the me-
ter implied in the P-MIDI file, starting from a tempogram
then analyzing the beat inconsistency with a salience func-
tion based on autocorrelation.

Researchers have also attempted to infer musical struc-
tures directly from audio. Ochiai et al. [16] proposed a
model for the joint estimation of note pitches, onsets, off-
sets and beats based on Non-negative Matrix Factorization
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(NMF) constrained with a rhythmic structure modeled with
a Gaussian mixture model. Collins et al. [8] proposed a
model for multiple fundamental frequency estimation, beat
tracking, quantization, and pattern discovery. The pitches
are estimated with a neural network. An HMM is sepa-
rately used for beat tracking. The results are then com-
bined to quantize the notes. Note spelling is performed by
estimating the key of the piece and assigning to MIDI notes
the most probable pitch class given the key.

An immediate problem arising when building a music
notation transcription system by incorporating the above-
mentioned musical structure inference methods is to find
an appropriate way to evaluate the transcription accuracy
of the system. In our prior work [7], we asked music
theorists to evaluate music notation transcriptions along
three different musical aspects, i.e., the pitch notation, the
rhythm notation, and the note positioning. However, sub-
jective evaluation is time consuming and difficult to scale
to provide enough feedback to further improve the tran-
scription system. It would be very helpful to have an ob-
jective metric for music notation transcription, just like the
standard metric F-measure for parametric transcription [1].
Considering the inherent complexity of music notation,
such a metric would need to take into account all of the
aspects of the high-level musical structures in the notation.
To the best of our knowledge, there is no such metric, and
the goal of this paper is to propose such a metric.

Specifically, in this paper we propose an edit distance,
based on similar metrics used in bioinformatics and lin-
guistics, to compare a music transcription with the ground-
truth score. The design of the metric was guided by a data-
driven approach, and by simplicity. The metric is calcu-
lated in two stages. In the first stage, the two scores are
aligned based on the pitch content; in the second stage,
the differences between the two scores are accumulated,
taking into account twelve different aspects of music nota-
tion: barlines, clefs, key signatures, time signatures, notes,
note spelling, note durations, stem directions, groupings,
rests, rest duration, and staff assignment. This will serve
the same purpose as F-measure in evaluating parametric
transcription. To validate the saliency and the usefulness
of this metric we also apply a linear regression model to
the errors measured by the metric to predict human evalu-
ations of transcriptions.

2. BACKGROUND

Approximate sequence comparison is a typical problem in
bioinformatics [13], linguistics, information retrieval, and
computational biology [15]. Its purpose is to find simi-
larities and differences between two or more sequences of
elements or characters. The sequences are assumed suffi-
ciently similar but potentially corrupted by errors. Possi-
ble differences include the presence of different elements,
missing elements or extra elements. Several metrics have
been proposed to measure the distance between two se-
quences, including the family of edit metrics [15], and gap-
penalizing alignment techniques [13].

A music score in traditional Western notation can be

viewed as a sequence of musical characters, such as clefs,
time and key signatures, notes and rests, possibly oc-
curring concurrently, such as in simultaneous notes or
chords. Transcription errors include alignment errors due
to wrong meter estimation or quantization, extra or miss-
ing notes and rests, note and rest duration errors, wrong
note spelling, wrong staff assignment, wrong note group-
ing and beaming, and wrong stem direction. All of these
errors contribute to a various degree to the quality of the
resulting transcription. However, the impact of each error
and error category has not, to the best of our knowledge,
been researched.

As an example, Fig. 1 shows two transcriptions of the
same piece. Both transcriptions contain similar errors, i.e.,
wrong meter detection, but the transcription in Fig. lc is
arguably worse than that in Fig. 1b. A similar problem can
be observed with the standard F-measure typically used to
evaluate parametric transcriptions [1]; while the metric is
objective and widely used, the impact of different errors
on the perceptual quality of a transcription has not been
researched. Intuitively, certain errors, such as extra notes
outside of the harmony, should be perceptually more ob-
jectionable than others, such as octave errors. This is the
reason for both proposing an objective metric and correlat-
ing the metric with human evaluations of transcriptions.

(c) Transcription off by a 16th note

Figure 1: Comparison of two transcriptions of the same
piece containing similar errors but with different readabil-

1ty.

3. PROPOSED METHOD

The proposed metric is calculated in two stages: in the
first stage, the transcription is aligned with the ground-
truth music notation based on its pitch content only, i.e.,
all of the other objects, such as rests, barlines, and time
and key signatures are ignored; in the second stage, all of
the objects occurring at the aligned portions of the scores
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Figure 2: Alignment between the ground-truth (top) and
a transcription (bottom) of Bach’s Minuet in G. Arrows
indicate aligned beats.
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Figure 3: Alignment between the ground-truth (top) and
another transcription (bottom) of Bach’s Minuet in G. Ar-
rows indicate aligned beats.

are grouped together and compared. The metric reports the
differences in aligned portions in terms of twelve aspects:
barlines, clefs, key signatures, time signatures, notes, note
spelling, note durations, stem directions, groupings, rests,
rest duration, and staff assignment.

Some algorithms to efficiently calculate certain edit dis-
tances, e.g., the Wagner-Fischer algorithm to calculate the
Levenshtein distance between two strings, are able to align
two sequences and calculate the edit costs in a single stage.
We initially tried to apply the same strategy to our problem,
but we discovered that the algorithm was not sufficiently
robust, especially with transcriptions highly corrupted by
wrong meter estimation. Intuitively, notes are the most
salient aspects of music, so it is arguable that the align-
ment of two transcriptions should be based primarily on
that aspect, while the overall quality of the transcription
should be judged on a variety of other aspects.

The ground truth and the transcription are both encoded
in MusicXML, a standard format to share sheet music files
between applications [10]. The two scores are aligned us-
ing Dynamic Time Warping [17]. The local distance is
simply the number of mismatching pitches, regardless of
duration, spelling and staff positioning.

To illustrate the purpose of the initial alignment, we
show two examples in Fig. 2 and Fig. 3. The alignment
stage outputs a list of pairs of aligned beats. Fig. 2 shows
the alignment of a fairly good transcription of Bach’s Min-
uet in G from the Notebook for Anna Magdalena Bach,
with the ground truth, which corresponds to the following

In this case, since the transcription is properly aligned
with the ground truth, the sequence is just a list of all equal
numbers, one for each onset of the notes in the score. How-
ever, beat 4.0 in the ground truth is matched with beats 4.0
and 5.0 in the transcription; the same happens for beats
10.0 and 11.0, so DTW cannot properly distinguish re-
peated pitches. Only one alignment is shown in the figure
for clarity.

Fig. 3 shows an example of an alignment for a badly
aligned transcription of the same piece. The corresponding

sequence is the following:

GT 00 00 0.0 1.0 1.0 1.5
T 00 05 1.0 175 2.0 2.5
20 25 30 30 3.0 4.0 4.0
3.0 375 425 45 5.0 55 7.0
50 60 60 6.0 7.0 7.5 8.0
70 825 85 90 975 1025 10.75
80 85 90 100 100 100 11.0
11.0 115 12.0 135 14.75 150 15.0

In this case, multiple beats in the transcription corre-
spond to the same beat in the ground truth, e.g., beat 1.0 in
the ground truth corresponds to beats 1.75 and 2.0 in the
transcription, because a single note in the ground truth has
been transcribed as two tied notes. Only one alignment is
shown in the figure for clarity.

To calculate the distance between the two aligned
scores, we proceed by first grouping all of the musical ob-
jects occurring inside aligned portions of the two scores
into sets, thus losing the relative location of the objects
within each set but preserving all of the other aspects, in-
cluding staff assignment. Then the aligned sets are com-
pared, and the differences between the two sets are re-
ported separately. The following aspects only allow binary
matching: barlines, clefs, key signatures, and time signa-
tures. Rests are matched for duration and staff assignment,
i.e., a rest with the correct duration but on the wrong staff
will be considered a staff assignment error, a rest with the
correct staff assignment but wrong duration will be consid-
ered a rest duration error. A missing or an extra rest will be
considered a rest error. Notes are matched for spelling, du-
ration, stem direction, staff assignment, and grouping into
chords. For groupings, we only report the absolute value
of the difference between the number of chords present in
the two sets. The metric does not distinguish missing or
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Figure 4: Correlation between the predicted ratings and
the average human evaluator ratings of all of the transcrip-
tions in the dataset.

extra elements. These choices were dictated by simplicity
of design and implementation.

All of the errors are cumulated for all of the matching
sets. The errors for barlines, notes, note spelling, note du-
rations, stem directions, groupings, rests, rest duration, and
staff assignment are then normalized by dividing the total
number of errors for each aspect by the total number of
musical objects taken into account in the score. This step
is necessary to normalize the number of errors for pieces
of different lengths. The errors for clefs, key signatures,
and time signatures are not normalized, as they are typi-
cally global aspects of the scores, and not influenced by the
length of the piece. This might be a limitation for pieces
with frequent changes in key signature or time signature.

As an example, the set of objects at the first beat of the
first measure of Fig. 2 include the initial barlines, clefs,
time signature, key signature, and notes starting on the
downbeat of the measure. Barlines, clefs, time signature,
and key signature are all correctly matched. All of the
notes are correct in pitch, spelling and duration, however
there are two errors in stem direction, one error in group-
ing, and one error in staff assignment. All of the rests are
considered rest errors at each respective onsets.

For the first beat of the first measure of Fig. 3, all of the
elements of the transcription till the first transcribed notes
(the three notes pointed by the first arrow) and the notes
tied to them will be considered as part of the same set. The
wrong key signature and time signature will be reported as
errors. The two eight rests will be reported as rest errors.
The three notes in the transcription are properly spelled,
but their duration is wrong, so that will be counted as three
note duration errors. The missing D from the chord will
be reported as a note error. The extra tied notes will be
reported as note errors as well.

In summary, the following twelve normalized error
counts are calculated by the metric: barlines, clefs, key
signatures, time signatures, notes, note spelling, note dura-
tions, stem directions, groupings, rests, rest duration, and
staff assignment. In order to translate these error counts
into a musically relevant evaluation, we propose to use
linear regression of the twelve error counts to fit human
ratings of three musical aspects of automatic transcrip-
tions, i.e., the pitch notation, the rhythm notation, and the
note positioning. For each aspect, the linear regression
learns twelve weights, one for each of the normalized error
counts, to fit the human ratings. These weights can then be
used to predict the human ratings of other music notation
transcriptions.

4. EXPERIMENTAL RESULTS

To evaluate the proposed approach, we calculate the nor-
malized error count and run linear regression to fit human
ratings of 19 short music excerpts collected in our prior
work [7]. These music excerpts were from the Kostka-
Payne music theory book, all of them piano pieces by well-
known composers, and were performed on a MIDI key-
board by a semi-professional piano player. These excerpts
were then transcribed into music notation using four differ-
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ent methods: a novel method proposed in the paper (which
will be referred to as CDT), MuseScore, GarageBand and
Finale. For each transcription, the human evaluators were
asked to assign a numerical rating between 1 and 10 for
three musical aspects, i.e., the pitch notation, the rhythm
notation, and the note positioning.

The proposed method of calculating the error counts
uses MusicXML [10], the de facto standard for shar-
ing sheet music files between applications, as the for-
mat of music notation. Two of the methods evalu-
ated in the paper (Finale and MuseScore) can output
the scores into MusicXML. For GarageBand, CDT and
the ground truth, however, MusicXML was not avail-
able or was difficult to output automatically. We had to
manually convert the scores into MusicXML. The tran-
scribed scores are named with the initial of the tran-
scription method and a number indicating the excerpt.
So, M-8.mx1 represents the eight excerpt transcribed
with MuseScore. The letter K, for Kostka-Payne, in-
dicates the ground truth scores. This dataset and a
Python implementation of the proposed approach are
available at http://www.ece.rochester.edu/
~acogliat/repository.html. The implementa-
tion uses the music2l toolkit [9] for parsing the Mu-
sicXML files and processing the imported scores. The im-
plementation has been tested with music21 V3.1.0.

In order to validate the quality of the prediction we
calculated the coefficient of determination R2, which is
the square of the Pearson correlation coefficient. The R?
was 0.558 for the pitch notation correlation, 0.534 for the
rhythm notation, and 0.601 for note positioning. These re-
sults are reflected in Fig. 4; the proposed metric fits the
data adequately, in general, even though the correlation is
not perfect. It can also be noted that the prediction of the
score for note positioning is the best, while the prediction
of the score for rhythm notation is the worst.

To understand the underlying causes of the covariance
we firstly analyzed the ratings given by the human evalua-
tors. As we can see from Fig. 5, the human evaluators were
oftentimes in disagreement among themselves. It must also
be noted that in our prior work [7], the human annotators
were not given exact instructions on what features to con-
sider for the evaluation, so a considerable amount of sub-
jectivity and judgment calls were likely to be present in the
ratings.

We also analyzed two transcriptions with the largest de-
viation from the predicted ratings, i.e., one transcription
with a high predicted rating and a low human rating, and
one transcription with a low predicted rating and a high hu-
man rating. The largest positive deviation occurred for the
rhythm notation of transcription M-1, for which the pro-
posed metric predicted a rating of 2.78, while the average
human rating was 5.98. If we compare the transcription
with the ground truth in Fig. 6 we can see that MuseScore
misinterpreted the meter, causing the proposed metric to
report a large number of note duration errors and barline
errors, which resulted in a low rating. Human annotators,
on the other side, likely penalized the meter error only once

Score

Piece

Score

Piece

(b) Rhythm Notation

Score

Piece

(c) Note Positioning

Figure S: Distributions of the human ratings of the 76 tran-
scriptions contained in the dataset. Each boxplot repre-
sents the ratings from 5 human evaluators.

globally, but still considered the transcription acceptable
overall.

The largest negative deviation occurred for the pitch no-
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Figure 6: Transcription of the first excerpt in the dataset
by MuseScore, which shows the largest positive difference
between the average human rating and the predicted rating,
that is a high predicted rating and a low human rating. This
evaluation difference occurs on the rhythm notation.

tation of transcription C-13, for which the proposed metric
predicted a rating of 6.83, while the annotators assigned an
average score of of 4.48. If we compare the transcription
with the ground truth in Fig. 7, we can notice that CDT
makes a single mistake in notating the pitches, i.e., Gtb in-
stead of Ef. It also makes a systematic error notating all Bs
one octave lower. Finally, not grouping the eight notes in
the treble staff makes the transcription hard to read. Pos-
sibly, the human annotators penalized the transcription be-
cause of its poor readability.

5. CONCLUSION AND FUTURE WORK

In this paper we proposed an objective metric to mea-
sure the differences between music notation transcriptions
and the ground truth score. The metric is calculated by
first aligning the pitch content of the transcription and the
ground-truth music notation, and then counting the differ-
ences in twelve key musical aspects: barlines, clefs, key
signatures, time signatures, notes, note spelling, note dura-
tions, stem directions, groupings, rests, rest duration, and
staff assignment. We then used linear regression to predict
human evaluator ratings along three aspects of music nota-
tion, namely, pitch notation, rhythm notation, and note po-
sitioning, from the error counts. Experiments show a clear
correlation between the predicted ratings and the average
human ratings, even though the correlation is not perfect.
One issue with the prediction is the high variance of the
evaluator ratings, which likely originates from the inher-
ent subjectivity of the tasks. Another issue of the proposed
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Figure 7: Transcription of the thirteenth excerpt in the
dataset by CDT, which shows the largest negative devia-
tion between the average human rating and the predicted
rating on rhythm notation, that is a low predicted rating and
a high human rating. This evaluation difference occurs on
the pitch notation.

metric is that it does not incorporate music theory knowl-
edge, such as the method proposed by Temperley to evalu-
ate metrical models [19].

The current experiments were conducted on music no-
tation transcriptions of human performances recorded on
a MIDI keyboard; as a consequence, the transcriptions
do not contain the errors commonly observed in audio-to-
MIDI conversion processes, such as octave errors and extra
or missing notes [5,6]. More research is necessary to eval-
uate the performance of the proposed method in the pres-
ence of such errors. In addition, the excerpts in the dataset
were very short, compared to real piano pieces, so addi-
tional research is necessary to assess the robustness of the
metric, and its computational complexity on longer pieces.

A Python implementation of the proposed ap-
proach, along with the dataset, is available at http:
//www.ece.rochester.edu/~acogliat/
repository.html. This implementation can be used
to calculate the twelve error counts as well as to predict
human ratings on the three musical aspects of a music
notation transcription.
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