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Abstract—This paper presents a novel approach to automatic
transcription of piano music in a context-dependent setting. This
approach employs convolutional sparse coding to approximate
the music waveform as the summation of piano note waveforms
(dictionary elements) convolved with their temporal activations
(onset transcription). The piano note waveforms are pre-recorded
for the specific piano to be transcribed in the specific environment.
During transcription, the note waveforms are fixed and their tem-
poral activations are estimated and post-processed to obtain the
pitch and onset transcription. This approach works in the time
domain, models temporal evolution of piano notes, and estimates
pitches and onsets simultaneously in the same framework. Ex-
periments show that it significantly outperforms a state-of-the-art
music transcription method trained in the same context-dependent
setting, in both transcription accuracy and time precision, in vari-
ous scenarios including synthetic, anechoic, noisy, and reverberant
environments.

Index Terms—Automatic music transcription, convolutional
sparse coding, piano transcription, reverberation.

I. INTRODUCTION

AUTOMATIC music transcription (AMT) is the process
of automatically inferring a high-level symbolic repre-

sentation, such as music notation or piano-roll, from a music
performance [1]. It has several applications in music educa-
tion (e.g., providing feedback to a piano learner), content-based
music search (e.g., searching songs with a similar bassline),
musicological analysis of non-notated music (e.g., Jazz impro-
visations and most non-Western music), and music enjoyment
(e.g., visualizing the music content).

Music transcription of polyphonic music is a challenging
task even for humans. It is related to ear training, a required
course for professional musicians on identifying pitches, inter-
vals, chords, melodies, rhythms, and instruments of music solely
by hearing. AMT for polyphonic music was first proposed in
1977 by Moorer [2], and Piszczalski and Galler [3]. Despite al-
most four decades of active research, it is still an open problem
and current AMT systems cannot match human performance in
either accuracy or robustness [1].
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A core problem of music transcription is figuring out which
notes are played and when they are played in a piece of music.
This is also called note-level transcription [4]. A note produced
by a pitched musical instrument has five basic attributes: pitch,
onset, offset, timbre and dynamic. Pitch is a perceptual attribute
but can be reliably related to the fundamental frequency (F0)
of a harmonic or quasi-harmonic sound [5]. Onset refers to the
beginning time of a note, in which the amplitude of that note
instance increases from zero to an audible level. This increase
is very sharp for percussive pitched instruments such as piano.
Offset refers to the ending time of a note, i.e., when the wave-
form of the note vanishes. Compared to pitch and onset, offset
is often ambiguous [4]. Timbre is the quality of a sound that
allows listeners to distinguish two sounds of the same pitch and
loudness [5]. Dynamic refers to the player’s control over the
loudness of the sound; e.g., a piano player can strike a key with
different forces, causing notes to be soft or loud. The dynamic
can also change the timbre of a note; e.g., on a piano, notes
played forte have a richer spectral content than notes played
piano[6]. In this paper we focus on pitch estimation and onset
detection of notes from polyphonic piano performances.

In the literature, these two problems are often addressed sep-
arately and then combined to achieve note-level transcription
(see Section II). For onset detection, commonly used methods
are based on spectral energy changes in successive frames [7].
They do not model the harmonic relation of frequencies that
exhibit this change, nor the temporal evolution of partial en-
ergy of notes. Therefore, they tend to miss onsets of soft notes
in polyphonic pieces and to detect false positives due to local
partial amplitude fluctuations caused by overlapping harmonics,
reverberation or beats [8].

Pitch estimation in monophonic music is considered a solved
problem [9]. In contrast, polyphonic pitch estimation is much
more challenging because of the complex interaction (e.g.,
the overlapping harmonics) of multiple simultaneous notes. To
properly identify all the concurrent pitches, the partials of the
mixture must be separated and grouped into clusters belonging
to different notes. Most multi-pitch analysis methods operate in
the frequency domain with a time-frequency magnitude repre-
sentation [1]. This approach has two fundamental limitations:
it introduces the time-frequency resolution trade-off due to the
Gabor limit [10], and it discards the phase, which contains useful
cues for the harmonic fusing of partials [5]. Current state-of-the-
art results are below 70% in F-measure, which is too low for
practical purposes, as evaluated by MIREX 2015 on orchestral
pieces with up to 5 instruments and piano pieces [11].

In this paper, we propose a novel time-domain approach
to transcribe polyphonic piano performances at the note-level.
More specifically, we model the piano audio waveform as a
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convolution of note waveforms (i.e., dictionary templates) and
their activation weights (i.e., transcription of note onsets). We
pre-learn the dictionary by recording the audio waveform of each
note of the piano, and then employ a recently proposed efficient
convolutional sparse coding algorithm to estimate the activa-
tions. Compared to current state-of-the-art AMT approaches,
the proposed method has the following advantages:

1) The transcription is performed in the time domain and
avoids the time-frequency resolution trade-off by impos-
ing structural constraints on the analyzed signal – i.e., a
context specific dictionary and sparsity on the atom acti-
vations – resulting in better performance, especially for
low-pitched notes;

2) It models temporal evolution of piano notes and estimates
pitch and onset simultaneously in the same framework;

3) It achieves much higher transcription accuracy and time
precision compared to a state-of-the-art AMT approach;

4) It works in reverberant environments and is robust to sta-
tionary noise to a certain degree.

One important limitation of the proposed approach is that it
only works in a context-dependent setting, i.e., the dictionary
needs to be trained for each specific piano and acoustic en-
vironment. While transcription of professionally recorded per-
formances is not possible, as the training data is not generally
available, the method is still useful for musicians, both pro-
fessionals and amateurs, to transcribe their performances with
much higher accuracy than state-of-the-art approaches. In fact,
the training process takes less than 3 minutes to record all 88
notes of a piano (each played for about 1 second). In most
scenarios, such as piano practices at home or in a studio, the
acoustic environment of the piano does not change, i.e., the
piano is not moved and the recording device, such as a smart-
phone, can be placed in the same spot, and the trained dictionary
can be re-used. Even for a piano concert in a new acoustic en-
vironment, taking 3 minutes to train the dictionary in addition
to stage setup is acceptable for highly accurate transcription of
the performance throughout the concert.

A preliminary version of the proposed approach has been
presented in [12]. In this paper, we describe this approach in
more detail, conduct systematic experiments to evaluate its
key parameters, and show its superior performance against a
state-of-the-art method in various conditions. The rest of the
paper is structured as follows: Section II reviews note-level
AMT approaches and puts the proposed approach in context.
Section III reviews the basics of convolutional sparse coding
and its efficient implementation. Section IV describes the pro-
posed approach and Section V conducts experiments. Finally,
Section VI concludes the paper.

II. RELATED WORK

There are in general three approaches to note-level music
transcription. Frame-based approaches estimate pitches in each
individual time frame and then form notes in a post-processing
stage. Onset-based approaches first detect onsets and then es-
timate pitches within each inter-onset interval. Note-based ap-
proaches estimate notes including pitches and onsets directly.

The proposed method uses the third approach. In the following,
we will review methods of all these approaches and discuss their
advantages and limitations.

A. Frame-Based Approach

Frame-level multi-pitch estimation (MPE) is the key compo-
nent of this approach. The majority of recently proposed MPE
methods operate in the frequency domain. One group of methods
analyze or classify features extracted from the time-frequency
representation of the audio input [1]. Raphael [13] used a
Hidden Markov Model (HMM) in which the states represent
pitch combinations and the observations are spectral features,
such as energy, spectral flux, and mean and variance of each
frequency band. Klapuri [14] used an iterative spectral subtrac-
tion approach to estimate a predominant pitch and subtract its
harmonics from the mixture in each iteration. Yeh et al. [15]
jointly estimated pitches based on three physical principles –
harmonicity, spectral smoothness and synchronous amplitude
evolution. More recently, Dressler [16] used a multi-resolution
Short Time Fourier Transform (STFT) in which the magnitude
of each bin is weighted by the bin’s instantaneous frequency.
The pitch estimation is done by detecting peaks in the weighted
spectrum and scoring them by harmonicity, spectral smoothness,
presence of intermediate peaks and harmonic number. Poliner
and Ellis [17] used Support Vector Machines (SVM) to classify
the presence of pitches from the audio spectrum. Pertusa and
Iñesta [18] identified pitch candidates from spectral analysis of
each frame, then selected the best combinations by applying a
set of rules based on harmonic amplitudes and spectral smooth-
ness. Saito et al.[19] applied a specmurt analysis by assuming
a common harmonic structure of all the pitches in each frame.
Finally, methods based on deep neural networks are beginning
to appear [20]–[23].

Another group of MPE methods are based on statistical frame-
works. Goto [24] viewed the mixture spectrum as a probability
distribution and modeled it with a mixture of tied-Gaussian mix-
ture models. Duan et al. [25] and Emiya et al. [26] proposed
Maximum-Likelihood (ML) approaches to model spectral peaks
and non-peak regions of the spectrum. Peeling and Godsill [27]
used non-homogenous Poisson processes to model the number
of partials in the spectrum.

A popular group of MPE methods in recent years are based
on spectrogram factorization techniques, such as Non-negative
Matrix Factorization (NMF) [28] or Probabilistic Latent Com-
ponent Analysis (PLCA) [29]; the two methods are mathe-
matically equivalent when the approximation is measured by
Kullback-Leibler (KL) divergence. The first application of spec-
trogram factorization techniques to AMT was performed by
Smaragdis and Brown [30]. Since then, many extensions and
improvements have been proposed. Grindlay et al. [31] used the
notion of eigeninstruments to model spectral templates as a lin-
ear combination of basic instrument models. Benetos et al. [32]
extended PLCA by incorporating shifting across log-frequency
to account for vibrato, i.e., frequency modulation. Abdallah
et al. [33] imposed sparsity on the activation weights. O’Hanlon
et al. [34], [35] used structured sparsity, also called group spar-
sity, to enforce harmonicity of the spectral bases.
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Time domain methods are far less common than frequency do-
main methods for multi-pitch estimation. Early AMT methods
operating in the time domain attempted to simulate the human
auditory system with bandpass filters and autocorrelations [36],
[37]. More recently, other researchers proposed time-domain
probabilistic approaches based on Bayesian models [38]–[40].
Bello et al. [41] proposed a hybrid approach exploiting both
frequency and time-domain information. More recently, Su and
Yang [42] also combined information from spectral (harmonic
series) and temporal (subharmonic series) representations.

The closest work in the literature to our approach was pro-
posed by Plumbley et al. [43]. In that paper, the authors pro-
posed and compared two approaches for sparse decomposition
of polyphonic music, one in the time domain and the other in
the frequency domain. The time domain approach adopted a
similar shift-invariant (i.e., convolutional) sparse coding formu-
lation to ours. However, they used an unsupervised approach and
a complete transcription system was not demonstrated due to the
necessity of manual annotation of atoms. The correct number
of individual pitches in the piece was also required in their ap-
proach. In addition, the sparse coding was performed in 256-ms
long windows using 128-ms long atoms, thus not modeling the
temporal evolution of notes. As we will show in Section V-A,
this length is not sufficient to achieve good accuracy in tran-
scription. Furthermore, the system was only evaluated on very
short music excerpts, possibly because of the high computa-
tional requirements.

To obtain a note-level transcription from frame-level pitch
estimates, a post-processing step, such as a median filter [42]
or an HMM [44], is often employed to connect pitch estimates
across frames into notes and remove isolated spurious pitches.
These operations are performed on each note independently. To
consider interactions of simultaneous notes, Duan and Temper-
ley [45] proposed a maximum likelihood sampling approach to
refine note-level transcription results.

B. Onset-Based Approach

In onset-based approaches, a separate onset detection stage
is used during the transcription process. This approach is of-
ten adopted for transcribing piano music, given the relative
prominence of onsets compared to other types of instruments.
SONIC, a piano music transcription by Marolt et al., used an
onset detection stage to refine the results of neural network
classifiers [46]. Costantini et al.[47] proposed a piano music
transcription method with an initial onset detection stage to de-
tect note onsets; a single CQT window of the 64 ms following
the note attack is used to estimate the pitches with a multi-class
SVM classification. Cogliati and Duan [48] proposed a piano
music transcription method with an initial onset detection stage
followed by a greedy search algorithm to estimate the pitches
between two successive onsets. This method models the entire
temporal evolution of piano notes.

C. Note-Based Approach

Note-based approaches combine the estimation of pitches and
onsets (and possibly offsets) into a single framework. While this

increases the complexity of the model, it has the benefit of in-
tegrating the pitch information and the onset information for
both tasks. As an extension to Goto’s statistical method [24],
Kameoka et al. [49] used so-called harmonic temporal struc-
tured clustering to jointly estimate pitches, onsets, offsets and
dynamics. Berg-Kirkpatrick et al. [50] combined an NMF-like
approach in which each note is modeled by a spectral profile and
an activation envelope with a two-state HMM to estimate play
and rest states. Ewert et al. [51] modeled each note as a series
of states, each state being a log-magnitude frame, and used a
greedy algorithm to estimate the activations of the states. In this
paper, we propose a note-based approach to simultaneously es-
timate pitches and onsets within a convolutional sparse coding
framework. A preliminary version of this work was published
in [12].

III. BACKGROUND

In this section, we present the background material for con-
volutional sparse coding and its recently proposed efficient
algorithm to prepare the reader for its application to automatic
music transcription in Section IV.

A. Convolutional Sparse Coding

Sparse coding – the inverse problem of sparse representa-
tion of a particular signal – has been approached in several
ways. One of the most widely used is Basis Pursuit DeNoising
(BPDN) [52]:

arg min
x

1
2
‖Dx − s‖2

2 + λ‖x‖1 , (1)

where s is a signal to approximate, D is a dictionary matrix,
x is the vector of activations of dictionary elements, and λ is a
regularization parameter controlling the sparsity of x.

Convolutional Sparse Coding (CSC), also called shift-
invariant sparse coding, extends the idea of sparse represen-
tation by using convolution instead of multiplication. Replacing
the multiplication operator with convolution in Eq. (1) we obtain
Convolutional Basis Pursuit DeNoising (CBPDN) [53]:

arg min
{xm }

1
2

∥
∥
∥
∥
∥

∑

m

dm ∗ xm − s

∥
∥
∥
∥
∥

2

2

+ λ
∑

m

‖xm‖1 , (2)

where {dm} is a set of dictionary elements, also called filters;
{xm} is a set of activations, also called coefficient maps; and λ

controls the sparsity penalty on the coefficient maps xm . Higher
values of λ lead to sparser coefficient maps and lower fidelity
approximation to the signal s.

CSC has been widely applied to various image process-
ing problems, including classification, reconstruction, denois-
ing and coding [54]. In the audio domain, s represents the audio
waveform for analysis, {dm} represents a set of audio atoms,
and {xm} represents their activations. Its applications to audio
signals include music representations [43], [55] and audio clas-
sification [56]. However, its adoption has been limited by its
computational complexity in favor of faster factorization tech-
niques, such as NMF or PLCA.
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CSC is computationally very expensive, due to the presence
of the convolution operator. A straightforward implementation
in the time-domain [57] has a complexity ofO(M 2N 2L), where
M is the number of atoms in the dictionary, N is the size of the
signal and L is the length of the atoms.

B. Efficient Convolutional Sparse Coding

An efficient algorithm for CSC has recently been pro-
posed [54], [58]. This algorithm is based on the Alternating
Direction Method of Multipliers (ADMM) for convex optimiza-
tion [59]. The algorithm iterates over updates on three sets of
variables. One of these updates is trivial, and the other can
be computed in closed form with low computational cost. The
additional update consists of a computationally expensive op-
timization due to the presence of the convolution operator. A
natural way to reduce the computational complexity of con-
volution is to use the Fast Fourier Transform (FFT), as pro-
posed by Bristow et al. [60] with a computational complexity of
O(M 3N). The computational cost of this subproblem has been
further reduced to O(MN) by exploiting the particular struc-
ture of the linear systems resulting from the transformation into
the spectral domain [54], [58]. The overall complexity of the
resulting algorithm is O(MN log N) since it is dominated by
the cost of FFTs. The complexity does not depend on the length
of the atoms L as the atoms are zero-padded to the length of
the signal N .

IV. PROPOSED METHOD

In this section, we describe how we model the piano tran-
scription problem as a convolutional sparse coding problem
in the time domain, and how we apply the efficient CSC
algorithm [54], [58] to solve the problem.

A. Transcription Process

The whole transcription process is illustrated with an example
in Fig. 1. Taking a monaural, polyphonic piano audio record-
ing s(t) as input (Fig. 1(b)), we approximate it with a sum of
dictionary elements dm (t), representing a typical, amplitude-
normalized waveform of each individual pitch of the piano,
convolved with their activation vectors xm (t):

s(t) �
∑

m

dm (t) ∗ xm (t). (3)

The dictionary elements dm (t) are pre-set by sampling all the
individual notes of a piano (see Section IV-A1) and are fixed
during transcription. The activations xm (t) are estimated us-
ing the efficient convolutional sparse coding algorithm [54],
[58]. Note that the model is based on an assumption that the
waveforms of the same pitch do not vary much with dynamic
and duration. This assumption seems to be over-simplified, yet
we will show that it is effective in the experiments. We will
also discuss its limitations and how to improve the model in
Section IV-B. Ideally, these activation vectors are impulse trains,
with each impulse indicating the onset of the corresponding note
at a certain time. In practice, the estimated activations contain

Fig. 1. Piano roll (a), waveform produced by an acoustic piano (b), raw
activation vectors (c), and the final detected note onsets (d) of Bach’s Minuet in
G major, BWV Anh 114, from the Notebook for Anna Magdalena Bach.

some noise (Fig. 1(c)). After post-processing, however, they
look like impulse trains (Fig. 1(d)), and recover the underlying
ground-truth note-level transcription of the piece (Fig. 1(a)).
Details of these steps are explained below.

1) Training: The dictionary elements are pre-learned in a
supervised manner by sampling each individual note of a piano



2222 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2016

Fig. 2. Distribution of the time intervals between two consecutive activations
of the same note in the ENSTDkCl collection of the MAPS dataset [26]. The
distribution has been truncated to 0.5 s for visualization.

at a certain dynamic level, e.g., forte, for 1 s. We used a sampling
frequency of 11,025 Hz to reduce the computational workload
during the experiments. The length was selected by a parameter
search (see Section V-A). The choice of the dynamic level is not
critical, even though we observed that louder dynamics produce
better results than softer dynamics.

2) Convolutional Sparse Coding: The activation vectors are
estimated from the audio signal using an open source implemen-
tation [61] of the efficient convolutional sparse coding algorithm
described in Section III-B. The sampling frequency of the audio
mixture to be transcribed must match the sampling frequency
used for the training stage, so we downsampled the audio mix-
tures to 11,025 Hz. As described in Section V-A, we investigated
the dependency of the performance on the parameter λ on an
acoustic piano dataset and selected the best value, λ = 0.005.
We then used the same value for all experiments covering syn-
thetic, anechoic, noisy and reverberant scenarios. We used 500
iterations in our experiments, even though we observed that the
algorithm usually converges after approximately 200 iterations.

The result of this step is a set of raw activation vectors, which
can be noisy due to the mismatch between the atoms in the dic-
tionary and notes in the audio mixture (see Fig. 1(c)). Note that
no non-negativity constraints are applied in the formulation, so
the activations can contain negative values. Negative activations
can appear in order to correct mismatches in loudness and du-
ration between the dictionary element and the actual note in the
sound mixture. However, because the waveform of each note is
quite consistent across different instances (see Section IV-B),
the strongest activations are generally positive.

3) Post-Processing: We perform peak picking by detecting
local maxima from the raw activation vectors to infer note on-
sets. However, because the activations are noisy, multiple closely
located peaks are often detected from the activation of one note.
To deal with this problem, we only keep the earliest peak within
a 50 ms window and discard the others. This enforces local
sparsity of each activation vector. We choose 50 ms because it
represents a realistic limit on how fast a performer can play the
same note repeatedly. In fact, Fig. 2 shows the distribution of the
time intervals between two consecutive activations of the same

note in the ENSTDkCl collection of the MAPS dataset [26]. No
interval is shorter than 50 ms.

4) Binarization: The resulting peaks are also binarized to
keep only peaks that are higher than 10% of the highest peak
in the entire activation matrix. This step is necessary to reduce
ghost notes, i.e., false positives, and to increase the precision
of the transcription. The value was chosen by comparing the
RMS of each note played forte with the RMS of the correspond-
ing note played piano in the isolated note collection of MAPS
(ENSTDkCl set). The average ratio is 6.96, with most of the
ratios below 10. This threshold is not tuned and is kept fixed
throughout our experiments.

B. Discussion

The proposed model is based on the assumption that the wave-
form of a note of the piano is consistent when the note is played
at different times at the same dynamic. This assumption is valid,
thanks to the mechanism of piano note production [6]. Each pi-
ano key is associated with a hammer, one to three strings, and
a damper that touches the string(s) by default. When the key is
pressed, the hammer strikes the string(s) while the damper is
raised from the string(s). The string(s) vibrate freely to produce
the note waveform until the damper returns to the string(s), when
the key is released. The frequency of the note is determined by
the string(s); it is stable and cannot be changed by the performer
(e.g., vibrato is impossible). The loudness of the note is deter-
mined by the velocity of the hammer strike, which is affected by
how hard the key is pressed. The force applied to the key is the
only control that the player has over the onset articulation. Mod-
ern pianos generally have three foot pedals: sustain, sostenuto,
and soft pedals; some models omit the sostenuto pedal. The sus-
tain pedal is commonly used. When it is pressed, all dampers
of all notes are released from all strings, regardless whether a
key is pressed or released. Therefore, its usage only affects the
offset of a note, if we ignore the sympathetic vibration of strings
across notes.

Fig. 3 shows the waveforms of four different instances of the
C4 note played on an acoustic piano at two dynamic levels. We
can see that the three f notes are very similar, even in the transient
region of the initial 20 ms. The waveform of the the mf note is
slightly different, but still resembles the other waveforms after
applying a global scaling factor. Our assumption is that softer
dynamics excite fewer modes in the vibration of the strings,
resulting in less rich spectral content compared to louder dy-
namics. However, because the spectral envelope of piano notes
is monotonically decreasing, higher partials have less energy
compared to lower partials, so softer notes can still be approx-
imated with notes played at louder dynamics. To prove the last
assertion, we compared an instance of a C4 note played forte
with different instances of the same pitch played at different
dynamics and also with different pitches. As we can see from
Table I, different instances of the same pitch are highly corre-
lated, regardless of the dynamic, while the correlation between
different pitches is low.

As discussed in Section II, Plumbley et al. [43] suggested
a model similar to the one proposed here. The efficient CSC



COGLIATI et al.: CONTEXT-DEPENDENT PIANO MUSIC TRANSCRIPTION WITH CONVOLUTIONAL SPARSE CODING 2223

Fig. 3. Waveforms of four different instances of note C4 played manually on
an acoustic piano, three at forte (f) and one at mezzo forte (mf). Their waveforms
are very similar, after appropriate scaling.

TABLE I
PEARSON CORRELATION COEFFICIENTS OF A SINGLE C4 NOTE PLAYED forte
WITH THE SAME PITCH PLAYED AT DIFFERENT DYNAMIC LEVELS AND WITH

DIFFERENT PITCHES. VALUES SHOWN ARE THE MAXIMA IN ABSOLUTE VALUE

OVER ALL THE POSSIBLE ALIGNMENTS.

Note Correlation Coefficient

C4 f #1 0.989
C4 f #2 0.969
C4 f #3 0.977
C4 mf #1 0.835
C4 mf #2 0.851
C4 mf #3 0.837
C4 p #1 0.608
C4 p #2 0.602
C4 p #3 0.606
C5 f #1 − 0.144
C5 f #2 − 0.146
C5 f #3 − 0.143
G4 f #1 − 0.016
G4 f #2 − 0.019
D4 f #1 0.042
D4 f #2 − 0.042

algorithm has also been applied to a score-informed source
separation problem by Jao et al. in [62]. This method used very
short atoms (100 ms), which might be a limiting factor as we
prove in Section V, however this limitation may be mitigated,
especially for sustaining instruments, by including 4 templates
per pitch.

The proposed method can operate online by segmenting the
audio input into 2 s windows, and retaining the activations for
the first second. The additional second of audio is necessary
to avoid the border effects of the circular convolution. Initial
experiments show that the performance of the algorithm
is unaffected by online processing, with the exception of
silent frames. As the binarization step is performed in each
window, silent frames introduce spurious activations in the final
transcription, so an additional step to detect silent frames, either

with a global thresholding or an adaptive filter, is required.
Since the computation time of the algorithm is linear in the
length of the signal, a shorter signal does not make the algorithm
run in real-time in our current CPU-based implementation,
which runs in about 5.9 times the length of the signal, but initial
experiments with a GPU-based implementation of the CSC
algorithm suggest that real-time processing is achievable.

V. EXPERIMENTS

We conduct experiments to answer two questions: (1) How
sensitive is the proposed method to key parameters such as the
sparsity parameter λ, and the length and loudness of the dic-
tionary elements? (2) How does the proposed method compare
with state-of-the-art piano transcription methods in different
settings such as anechoic, noisy, and reverberant environments?

For the experiments we used three different datasets: the
ENSTDkCl (close-mic acoustic recordings) and the SptkBGCl
(synthetic recordings) collections from the MAPS dataset [26],
and another synthetic dataset we created specially for this paper,
using MIDI files in the ENSTDkCl collection. We will call this
dataset ENSTGaSt.

The ENSTDkCl dataset is used to validate the proposed
method in a realistic scenario. This collection contains 30 pieces
of different styles and genres generated from high quality MIDI
files that were manually edited to achieve realistic and expressive
performances. The MIDI files will be used as the ground-truth
for the transcription. The pieces were played on a Disklavier,
which is an acoustic piano with mechanical actuators that can be
controlled via MIDI input, and recorded in a close microphone
setting to minimize the effects of reverb. The SptkBGCl dataset
uses a virtual piano, the Steinway D from The Black Grand
by Sampletekk. For both datasets, MAPS also provides the 88
isolated notes, each 1 s long, played at three different dynamics:
piano (MIDI velocity 29), mezzo-forte (MIDI velocity 57) and
forte (MIDI velocity 104). We always use the forte templates
for all the experiments, except for the experiment investigating
the effect of the dynamic level of the dictionary atoms. The syn-
thetic dataset is also useful to set a baseline of the performance
in an ideal scenario, i.e., absence of noise and reverb.

The ENSTGaSt dataset was created to investigate the depen-
dency of the proposed method on the length of the dictionary
elements, as note templates provided in MAPS are only 1 s
long. The dataset was also used to verify some alignment issues
that we discovered in the ground truth transcriptions of the EN-
STDkCl and SptkBGCl collections of MAPS. The ENSTGaSt
dataset was created from the same 30 pieces in the ENSTDkCl
dataset and re-rendered from the MIDI files using a digital audio
workstation (Logic Pro 9) with a sampled virtual piano plug-
in (Steinway Concert Grand Piano from the Garritan Personal
Orchestra); no reverb was used at any stage. The details of the
synthesis model, i.e., the number of different samples per pitch
and the scaling of the samples with respect to the MIDI velocity,
are not publicly available. To gain some insight on the synthesis
model we generated 127 different instances of the same pitch,
i.e., C4, one for each value of the valid MIDI velocities, each 1 s
long. We then compared the instances with cross correlation and
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Fig. 4. Average F-measure on the 30 pieces in the ENSTDkCl collection
(close-mic acoustic recordings) of the MAPS dataset for different values of λ,
using 1 s long atoms.

determined that the virtual instrument uses 4 different samples
per pitch, and that the amplitude of each sample is exponentially
scaled based on the MIDI velocity. To ensure the replicability
of this set of experiments, the dataset is available on the first
author’s website1.

We use F-measure to evaluate the note-level transcription [4].
It is defined as the harmonic mean of precision and recall, where
precision is defined as the percentage of correctly transcribed
notes among all transcribed notes, and recall is defined as the
percentage of correctly transcribed notes among all ground-truth
notes. A note is considered correctly transcribed if its estimated
discretized pitch is the same as a reference note in the ground-
truth and the estimated onset is within a given tolerance value
(e.g., ± 50 ms) of the reference note. We do not consider offsets
in deciding the correctness.

A. Parameter Dependency

To investigate the dependency of the performance on the pa-
rameter λ, we performed a grid search with values of λ logarith-
mically spaced from 0.4 to 0.0004 on the ENSTDkCl collection
in the MAPS dataset [26]. The dictionary elements were 1 s
long. The results are shown in Fig. 4. As we can observe from
Fig. 4, the method is not very sensitive to the value of λ. For
a wide range of values, from 0.0004 to about 0.03, the average
F-measure is always above 80%.

We also investigated the performance of the method with
respect to the length of the dictionary elements, using the EN-
STGaSt dataset. The average F-measure versus the length over
all the pieces is shown in Fig. 5. The sparsity parameter λ is fixed
at 0.005. The highest F-measure is achieved when the dictionary
elements are 1 second long. The MAPS dataset contains pieces
of very different styles, from slow pieces with long chords,
to virtuoso pieces with fast runs of short notes. Our intuition
suggested that longer dictionary elements would provide better

1http://www.ece.rochester.edu/˜acogliat/repository.html.

Fig. 5. Average F-measure on the 30 pieces in the ENSTGaSt dataset versus
dictionary atom length, with λ fixed at 0.005.

Fig. 6. Raw activations of the two most active note templates when transcrib-
ing a piano C4 note with 88 forte note templates. Note that the activation of the
wrong note template is mostly negative.

results for the former, and shorter elements would be more ap-
propriate for the latter, but we discovered that longer dictionary
elements generally give better results for all the pieces.

Finally, we investigated the effect of the dynamic level of the
dictionary atoms, using the ENSTDkCl collection. In general
we found the proposed method to be very robust to differences
in dynamic levels, but we obtained better results when louder
dynamics were used during training. A possible explanation can
be seen in Figs. 6 and 7. In Fig. 6 we transcribed a signal con-
sisting of a single C4 note played piano with a dictionary of
forte notes. The second most active note shows strong negative
activations, which do not influence the transcription, as we only
consider positive peaks. The negative activations might be due
to the partials with greater amplitude contained in the forte dic-
tionary element but not present in the piano note; i.e., CSC tries
to achieve a better reconstruction by subtracting some frequency
content. On the other side, in Fig. 7 we tested the opposite sce-
nario, a single C4 note reconstructed forte with a dictionary of
piano notes. The second most active note shows both positive
and negative activations; positive activations might potentially
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Fig. 7. Raw activations of the two most active note templates when transcrib-
ing a forte C4 note with 88 piano note templates. Note that the activation of the
wrong note template contains a strong positive portion, which may lead to false
positives in the final transcription.

lead to false positives. In this case, the forte note contains some
spectral content not present in the piano template, so CSC im-
proves the signal reconstruction by adding other note templates.
Negative activations also appear when there is a mismatch be-
tween the length of a note in the audio signal and the length
of the dictionary element. Using multiple templates per pitch,
with different dynamics and different lengths, might reduce the
occurrence of negative activations at the expense of increased
computational time.

B. Comparison to State of the Art

We compared our method with a state-of-the-art AMT method
proposed by Benetos and Dixon [32], which was submitted for
evaluation to MIREX 2013 as BW3 [63]. The method will be
referred to as BW3-MIREX13. This method is based on proba-
bilistic latent component analysis of a log-spectrogram energy
and uses pre-extracted note templates from isolated notes. The
templates are also pre-shifted along the log-frequency in order
to support vibrato and frequency deviations, which are not an
issue for piano music in the considered scenario. The method
is frame-based and does not model the temporal evolution of
notes. To make a fair comparison, dictionary templates of both
BW3-MIREX13 and the proposed method were learned on in-
dividual notes of the piano that was used for the test pieces. We
used the implementation provided by the author along with the
provided parameters, with the only exception of the hop size,
which was reduced to 5 ms to test the onset detection accuracy.

1) Anechoic Settings: For this set of experiments we tested
multiple onset tolerance values to show the highest onset preci-
sion achieved by the proposed method. The dictionary elements
were 1 s long. We used the forte templates. The sparsity param-
eter λ was fixed at 0.005. The results are shown in Figs. 8–10.
From the figures, we can notice that the proposed method out-
performs BW3-MIREX13 by at least 20% in median F-measure
for onset tolerance of 50 ms and 25 ms (50 ms is the standard
onset tolerance used in MIREX [4]). When using dictionary el-
ements played at piano dynamic, the median F-measure on the
ENSTDkCl collection of the MAPS dataset drops to 70% (onset

Fig. 8. F-measure for 30 pieces in the ENSTGaSt dataset (synthetic record-
ings). Each box contains 30 data points.

Fig. 9. F-measure for 30 pieces in the SptkBGCl dataset (synthetic record-
ings). Each box contains 30 data points.

Fig. 10. F-measure for the 30 pieces in the ENSTDkCl collection (close-mic
acoustic recordings) of the MAPS dataset. Each box contains 30 data points.
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Fig. 11. Two pieces from the ENSTDkCl collection in MAPS showing dif-
ferent alignments between audio and ground truth MIDI notes (each red bar
represents a note, as in a MIDI pianoroll). The figures show the beginning of
the two pieces. The audio files are downmixed to mono for visualization. The
time axis is in seconds.

tolerance set at 50 ms). In the experiment with the ENSTGaSt
dataset, shown in Fig. 8, the proposed method exhibits consistent
accuracy of over 90% regardless of the onset tolerance, while the
performance of BW3-MIREX13 degrades quickly as the toler-
ance decreases under 50 ms. The proposed method maintains a
median F-measure of 90% even with an onset tolerance of 5 ms.
In the experiment on acoustic piano, both the proposed method
and BW3-MIREX13 show a degradation of the performances
with small tolerance values of 10 ms and 5 ms.

The degradation of performance on ENSTDkCl and Sptk-
BgCl with small tolerance values, especially the increased sup-
port in the distribution of F-measure at 10 ms and 5 ms, drove
us to further inspect the algorithm and the ground truth. We
noticed that the audio and the ground truth transcription in the
MAPS database are in fact not consistently lined up, i.e., differ-
ent pieces show a different delay between the activation of the
note in the MIDI file and the corresponding onset in the audio
file. Fig. 11 shows two files from the ENSTDkCl collection of
MAPS. Fig. 11(b) shows a good alignment between the audio
and MIDI onsets, but in Fig. 11(a) the MIDI onsets occur 15 ms

Fig. 12. Average F-measure per octave for the 30 pieces in the ENSTDkCl
collection (close-mic acoustic recordings) of the MAPS dataset. Onset tolerance
50 ms. λ set to 0.005. The letters on the horizontal axis indicate the pitch
range, the numbers show the total number of notes in the ground truth for the
corresponding octave.

earlier than audio onsets. This inconsistency may be responsible
for the poor results with small tolerance values.

To test this hypothesis we re-aligned the ground truth with
the audio by picking the mode of the onset differences for the
correctly identified notes by the proposed method per piece.
With the aligned ground truth, the results on the SptkBgCl
dataset for 10 ms of tolerance are similar to the ones on the
ENSTGaSt dataset; for 5 ms, the minimum F-measure is in-
creased to 52.7% and the median is increased to 80.2%. On the
ENSTDkCl dataset, the proposed method increases the median
F-measure by about 15% at 10 ms and 5 ms. It might be ar-
gued that the improvement might be due to a systematic timing
bias in the proposed method. However, as shown in Fig. 8, the
transcription performance of the proposed method on the EN-
STGaSt dataset does not show clear degradation when the onset
tolerance becomes smaller. This suggests that there are some
alignment problems between the audio and ground-truth MIDI
transcription in the SptkBGCl and ENSTDkCl collections of
MAPS. This potential misalignment issue only becomes promi-
nent when evaluating transcription methods with small onset
tolerance values, which are rarely used in the literature. There-
fore, we believe that this issue requires additional investigations
from the research community before our modified ground-truth
can be accepted as the correct one. We thus make the modified
ground-truth public on the first author’s website, but still use
the original non-modified ground truth in all experiments in this
paper.

2) Robustness to Pitch Range and Polyphony: Fig. 12 com-
pares the average F-measure achieved by the two methods along
the different octaves of a piano keyboard. The figure clearly
shows that the results of BW3-MIREX13 depend on the fun-
damental frequencies of the notes; the results are very poor
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Fig. 13. F-measure of the 30 pieces in the ENSTDkCl collection (close-mic
acoustic recordings) of MAPS versus average instantaneous polyphony. The
orange line shows the linear regression of the data points.

for the first two octaves, and increase monotonically for higher
octaves, except for the highest octave, which is not statisti-
cally significant. The proposed method shows a more balanced
distribution. This suggests the advantage of our time-domain
approach in avoiding the time-frequency resolution trade-off.
We do not claim that operating in the time domain automati-
cally overcomes the time-frequency trade-off, and explain the
high accuracy of the proposed method as follows. Each dictio-
nary atom contains multiple partials spanning a wide spectral
range, and the relative phase and magnitude of the partials for
a given note have low variability across instances of that pitch.
This, together with the sparsity penalty, which limits the model
complexity, allows for good performance without violating the
fundamental time-frequency resolution limitations.

The proposed algorithm is less sensitive to the polyphony
of the pieces compared to BW3-MIREX13. For each piece in
the ENSTDkCl collection of MAPS we calculated the average
polyphony by sampling the number of concurrently sounding
notes every 50 ms. The results are shown in Fig. 13. BW3-
MIREX13 shows a pronounced degradation in performance for
denser polyphony, while the proposed method only shows min-
imal degradation.

Fig. 14 shows the results on the individual pieces of the
ENSTDkCl collection of MAPS. The proposed method out-
performs BW13-MIREX13 for all pieces except for two, for
which the two methods achieve the same F-measure – Mozart’s
Sonata 333, second movement (mz_333_2) and Tchaikovsky’s
May - Starlight Nights (ty_mai) from The Seasons. The definite
outlier is Schuman’s In Slumberland (scn15_12), which is the
piece with the worst accuracy for both the proposed method and
BW13-MIREX13; it is a slow piece with the highest average
polyphony in the dataset (see Fig. 13). The piece with the second
worst score is Tchaikovsky’s May - Starlight Nights (ty_mai);
again a slow piece but with a lower average polyphony. A very
different piece with an F-measure still under 70% is Listz’s
Transcendental Étude no. 5 (liz_et5); it is a very fast piece with
many short notes and high average polyphony. Further research
is needed to investigate why a lower accuracy resulted from
these pieces.

Fig. 14. Individual F-measures of the 30 pieces in the ENSTDkCl collection
(close-mic acoustic recordings) of MAPS. Proposed method in blue circles,
BW-MIREX13 in orange crosses.

Fig. 15. F-measure for the 30 pieces in the ENSTDkCl collection (close-mic
acoustic recordings) of MAPS with white noise at different SNR levels. Each
box contains 30 data points.

3) Robustness to Noise: In this section, we investigate the
robustness of the proposed method to noise, and compare the
results with BW3-MIREX13. We used the original noiseless
dictionary elements with length of 1 second and tested both
white and pink additive noisy versions of the ENSTDkCl col-
lection of MAPS. White and pink noises can represent typical
background noises (e.g., air conditioning) in houses or prac-
tice rooms. We used the same parameter settings: λ = 0.005
and 1 s long, forte templates. The results are shown in Figs. 15
and 16. As we can notice from the plots, the proposed method
shows great robustness to white noise, even at very low SNRs,
always having a definite advantage over BW3-MIREX13. The
proposed method consistently outperforms BW3-MIREX13 by
about 20% in median F-measure, regardless of the level of noise.
The proposed method is also very tolerant to pink noise and out-
performs BW3-MIREX13 with low and medium levels of noise,
up to an SNR of 5 dB.
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Fig. 16. F-measure for the 30 pieces in the ENSTDkCl collection (close-mic
acoustic recordings) of MAPS with pink noise at different SNR levels. Each
box contains 30 data points.

Fig. 17. F-measure for the 30 pieces in the ENSTDkCl collection (close-mic
acoustic recordings) of MAPS with reverb. Each box contains 30 data points.

4) Robustness to Reverberation: In the third set of exper-
iments we tested the performance of the proposed method in
the presence of reverberation. Reverberation exists in nearly all
real-world performing and recording environments, however,
few systems have been designed and evaluated in reverberant
environments in the literature. Reverberation is not even men-
tioned in recent surveys [1], [64]. We used a real impulse re-
sponse of an untreated recording space2 with an RT60 of about
2.5 s, and convolved it with both the dictionary elements and the
audio files. The results are shown in Fig. 17. As we can notice,
the median F-measure is reduced by about 3% for the proposed
method in presence of reverb, showing a high robustness to re-
verb. The performance of BW3-MIREX13, however, degrades
significantly, even though it was trained on the same reverberant
piano notes. This further shows the advantage of the proposed
method in real acoustic environments.

2WNIU Studio Untreated from the Open AIR Library http://www.openairlib.
net/auralizationdb/content/wniu-studio-untreated.

5) Sensitivity to Environment Mismatch: To illustrate the
sensitivity of the method to the acoustic environment, we gener-
ated two synthetic impulse responses with RIR Generator [65],
one with RT60 equal to 500 ms and the other with RT60 equal
to 250 ms. These two values were picked to simulate an empty
concert hall, and the same hall with an audience, whose pres-
ence reduces the reverberation time by adding absorption to the
acoustic environment. We applied the longer impulse response
to the dictionary and the shorter one to the 30 pieces in the
ENSTDkCl collection of MAPS. The median F-measure for the
experiment decreases from 82.7%, as in Fig. 10, to 75.2%. It
should be noted that this is an extreme scenario, as a typical
application would use a close mic setup, reducing the influence
of the room acoustics.

6) Runtime: We ran all the experiments on an iMac equipped
with a 3.2 GHz Intel Core i5 processor and 16 GB of memory.
The code was implemented in MATLAB. For the 30 pieces
in the ENSTDkCl collection of MAPS, the median runtime
was 174 s, with a maximum of 186 s. Considering that we
transcribed the first 30 s of each piece, the entire process takes
about 5.9 times the length of the signal to be transcribed. Initial
experiments with GPU implementation of the CSC algorithm
show an average speedup of 10 times with respect to the CPU
implementation.

VI. DISCUSSION AND CONCLUSIONS

In this paper we presented an automatic music transcription
algorithm based on convolutional sparse coding in the time-
domain. The proposed algorithm consistently outperforms a
state-of-the-art algorithm trained in the same scenario in all syn-
thetic, anechoic, noisy, and reverberant settings, except for the
case of pink noise at 0 dB SNR. The proposed method achieves
high transcription accuracy and time precision in a variety of
different scenarios, and is highly robust to moderate amounts
of noise. It is also highly insensitive to reverb, as long as the
training session is performed in the same environment used for
recording the audio to be transcribed. However, a limited gen-
eralization to a different room acoustic has been shown in the
experiments.

While in this specific context the proposed method is clearly
superior to the state-of-the-art algorithm used for comparison
(BW3-MIREX13 [32]), it must be noted that our method cannot,
at the moment, generalize to different contexts. In particular, it
cannot transcribe performances played on different pianos not
used for the training. Preliminary experiments with transcribing
the ENSTDkCl dataset using the dictionary from the SptkBGCl
dataset show a dramatic drop in precision resulting in an av-
erage F-measure of 16.9%; average recall remains relatively
high at 64.7%. BW3-MIREX13 and, typically, other spectral
domain-based methods are capable of being trained on multiple
instruments and generalize to different instruments of the same
kind. Nonetheless, the proposed context-dependent approach is
useful in many realistic scenarios, considering that pianos are
usually fixed in homes or studios. Moreover, the training pro-
cedure is simple and fast, in case the context changes. Future
research is needed to adapt the dictionary to different pianos.
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The proposed method cannot estimate note offsets or dynam-
ics, even though the amplitude of the raw activations (before
binarization) is proportional to the loudness of the estimated
notes. A dictionary containing notes of different lengths and
different dynamics could be used in order to estimate those two
additional parameters, even though group sparsity constraints
should probably be introduced in order to avoid concurrent ac-
tivations of multiple templates for the same pitch.

Another interesting future research direction is to evaluate
the model on other percussive and plucked pitched instruments,
such as harpsichord, marimba, bells and carillon, given the con-
sistent nature of their notes and the model’s ability to capture
temporal evolution.
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[18] A. Pertusa and J. M. Iñesta, “Multiple fundamental frequency estimation
using Gaussian smoothness,” in Proc. IEEE Int. Conf. Audio, Speech,
Signal Process., Apr. 2008, pp. 105–108.

[19] S. Saito, H. Kameoka, K. Takahashi, T. Nishimoto, and S. Sagayama,
“Specmurt analysis of polyphonic music signals,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 16, no. 3, pp. 639–650, Mar. 2008.

[20] J. Nam, J. Ngiam, H. Lee, and M. Slaney, “A classification-based poly-
phonic piano transcription approach using learned feature representa-
tions,” in Proc. Int. Soc. Music Inform. Retrieval Conf., 2011, pp. 175–180.
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