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ABSTRACT
Automatic music transcription (AMT) is the process of converting an
acoustic musical signal into a symbolic musical representation, such
as a MIDI file, which contains the pitches, the onsets and offsets
of the notes and, possibly, their dynamics and sources (i.e., instru-
ments). Most existing algorithms for AMT operate in the frequency
domain, which introduces the well known time/frequency resolution
trade-off of the Short Time Fourier Transform and its variants. In this
paper, we propose a time-domain transcription algorithm based on
an efficient convolutional sparse coding algorithm in an instrument-
specific scenario, i.e., the dictionary is trained and tested on the same
piano. The proposed method outperforms a current state-of-the-art
AMT method by over 26% in F-measure, achieving a median F-
measure of 93.6%, and drastically increases both time and frequency
resolutions, especially for the lowest octaves of the piano keyboard.

Index Terms— Automatic Music Transcription, Convolutional
Sparse Coding, Shift Invariant, Sparse Representation

1. INTRODUCTION

Automatic Music Transcription (AMT) is the process of inferring
a symbolic music representation from a music audio file. The out-
put of AMT can be a full musical score or an intermediate repre-
sentation, such as a MIDI file, which includes note pitches, onsets,
offsets and, possibly, dynamics and instruments playing the notes.
The complete AMT problem can be divided into several subtasks,
not necessarily in this order: multi-pitch estimation, onset/offset de-
tection, loudness estimation, source recognition, note tracking, beat
and meter detection, and rhythm identification. Most research thus
far has focused on the multi-pitch estimation and onset detection
stages [1].

Many music transcription methods attempt to identify pitches in
each time frame, and then form notes in a post-processing stage [1].
This approach, however, does not model the temporal evolution of
notes. We can call this approach frame-based transcription. Most
spectrogram decomposition-based approaches fall into this category.
Non-negative matrix factorization (NMF) is a method for factorizing
a large non-negative matrix into the product of two, low-rank non-
negative matrices [2][3]. NMF has been applied to source separation
and AMT [4]. An alternate formulation of NMF named Probabilis-
tic Latent Component Analysis (PLCA) was proposed by Smaragdis
et al. in 2006 [5]. PLCA is numerically equivalent to NMF but its
formulation provides a framework that is easier to generalize and
extend [5]. NMF is computationally inexpensive, jointly estimates
multiple pitches at the same time and provides a salience of each es-
timated pitch with its activation weight. NMF can be applied in an
unsupervised way to analyze musical signals, where the dictionary

elements are learned during the factorization of the audio spectro-
gram. However, the learned dictionary elements may represent only
a part of a note’s spectrum, or represent a mixture of multiple notes,
and they can also be sensitive to the learning order or factorization
rank. Clustering or group sparsity [6] are often employed to improve
the correspondence between templates and notes. For AMT, super-
vised NMF is generally preferred, where a dictionary of templates
corresponding to each note is pre-learned, typically from isolated
notes. Each template essentially corresponds to the long-time av-
erage spectrum of a note, thus ignoring the temporal evolution of
the spectral content. To transcribe music played by a different in-
strument, a dictionary adaptation process can be employed [7]. To
obtain note-level transcription results, a post-processing step, such
as a median filter or HMM, is required to connect frame-level pitch
estimates into notes [8].

Piano notes are characterized by significant temporal evolutions,
in both the waveform and the spectral content. In particular, differ-
ent partials decay at different rates, i.e., higher frequency partials de-
cay faster than lower frequency ones [9][10]. However, only a few
methods, all of which operate in the frequency domain, model tem-
poral evolution of notes. A tensor can be used to represent multiple
vectors evolving in time, e.g., a dictionary of spectrograms. Non-
negative tensor factorization (NTF), an extension of NMF, has been
applied to source separation and AMT [11][12][13]. Grindlay and
Ellis proposed a generalization to PLCA to account for the temporal
evolution of each note [14]. A variant of NMF called Non-negative
Factorial Hidden Markov Model (N-FHMM) was introduced to learn
multiple spectral templates for each note and a Markov chain de-
scribing the temporal evolution between them [15]; Ewert et al. have
recently proposed a dynamic programming variation of N-FHMM to
reduce its high computational cost [16]. Non-negative Matrix De-
convolution (NMD) as introduced in [17], which concatenates sev-
eral spectral frames into an entire time-frequency template, is ca-
pable of modeling the temporal evolution of non-stationary sounds.
In [18], we proposed a two-stage approach for piano transcription
which models the temporal evolution of piano notes in the frequency
domain. A dictionary of spectrograms of notes was pre-learned from
isolated notes, and was then used to decompose each inter-onset in-
terval of the music audio. The performance of this approach is lim-
ited by the onset detection accuracy. Regardless of the technique
used, all the above-mentioned methods attempt to identify entire
notes at once. We call these methods note-based transcription, as
opposed to frame-based transcription.

Spectrogram factorization methods generally suffer from the
time/frequency resolution trade-off introduced by the Short Time
Fourier Transform and its variants. The transcription of low-
frequency notes often requires a high frequency resolution. But
to achieve such a high frequency resolution, the time resolution
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would be sacrificed. In addition, the phase information is often
discarded in spectrogram decomposition methods. This may lead
to source number ambiguity and octave ambiguity [19]. The time
domain representation, on the other hand, does not have these prob-
lems, since it is not subject to the time-frequency resolution tradeoff
and also contains the phase information. It is noted that the best
performing single-pitch estimation methods work in the time do-
main [20]. However, for polyphonic transcription, there have been
very few methods in the time domain. Plumbley et al. proposed
and compared two approaches for sparse decomposition of poly-
phonic music, one in the time domain and the other in the frequency
domain [21]. While they suggest that both approaches can be ap-
plied to AMT, to the best of our knowledge no further research was
published for the time-domain approach to AMT.

In this paper we present a supervised approach to AMT based on
Convolutional Sparse Coding (CSC) of a time domain signal. The
proposed method uses an instrument-specific, pre-learned dictionary
followed by an efficient convolutional basis pursuit denoising algo-
rithm to find a sparse representation of the audio signal. Finally, note
onsets are estimated from the coefficient maps determined in the pre-
vious step by peak picking. The advantages of the proposed method
are: higher performance with respect to state-of-the-art transcrip-
tion algorithms, improved temporal resolution, improved resolution
at lower-frequencies and reduced octave errors.

In the spirit of reproducible research, the code and dataset used
in this paper are available at http://www.ece.rochester.
edu/˜acogliat/ under the Code & Dataset Repository section.

2. BACKGROUND

Sparse representations have been widely applied to signal and image
processing problems. Sparse coding, the inverse problem of sparse
representation of a particular signal, has been approached in sev-
eral ways. One of the most widely used is Basis Pursuit DeNoising
(BPDN) [22]:

argmin
x

1

2
‖Dx− s‖22 + λ‖x‖1, (1)

where s is a signal to approximate, D is a dictionary matrix, x is
the sparse representation, and λ is a regularization parameter. Con-
volutional Sparse Coding (CSC), also called shift-invariant sparse
representation, extends the idea of sparse representation by using
convolution instead of multiplication. Replacing the multiplication
operator with convolution in (1) we obtain Convolutional Basis Pur-
suit DeNoising (CBPDN) [23]:

argmin
{xm}

1

2

∥∥∥∥∥∑
m

dm ∗ xm − s

∥∥∥∥∥
2

2

+ λ
∑
m

‖xm‖1 , (2)

where {dm} is a set of dictionary elements, also called filters, and
{xm} is a set of activations, also called coefficient maps.

CSC has been applied in the audio domain to source separa-
tion [24], music transcription [21] and audio classification [25].
However, its adoption has been limited by its computational com-
plexity in favor of faster factorization techniques like NMF. Recent
research on efficient algorithms for CSC [26] and increased avail-
ability of computational power have renewed the interest in CSC for
audio applications [27].

The algorithm described in [26] is based on the Alternating Di-
rection Method of Multipliers (ADMM) for convex optimization.

The most computationally expensive subproblem handles the con-
volution operation by transforming to the frequency domain and
exploiting the resulting linear system structure to obtain a very ef-
ficient solution. Since the overall complexity of the algorithm is
dominated by the cost of FFTs, the cost of the entire algorithm is
O(MN logN), where M is the number of atoms in the dictionary
and N is the size of the signal.

3. RELATION TO PRIOR WORK

The use of CSC on time-domain signals for AMT has been proposed
as early as 2005 [21][24], but initial research was dropped in favor of
spectrogram-based methods, which have much lower computational
cost.

Plumbley et al. [21] proposed a shift-invariant generative model
in the time domain based on a sum of scaled and shifted versions of
some underlying functions am, called atoms. Given a discrete audio
signal s[t], they select any I consecutive samples into a vector si
which is approximated as

si =

J∑
j=1

M∑
m=1

aijmxim + ei, 1 ≤ i ≤ I, (3)

where aijm is a tensor in which the m-th slice is a matrix of shifted
versions of the original function am, with j being the time shift,
xjm are the activations of atom m, and ei is additive noise. This
model is effectively a constrained variant of (2), with the `1 penalty
term replaced with an upper bound on the `0 norm. Plumbley et
al. proposed an unsupervised dictionary learning algorithm for this
model, in which the dictionary atoms as well as the activation coeffi-
cients are learned in a subset selection process to reduce the solution
space. They applied this approach to AMT and discovered that the
learned templates generally reflected the individual notes present in
the piece. They suggest applying this method to AMT in an un-
supervised way. However, similarly to all unsupervised methods,
this approach suffers from several issues. First, each learned tem-
plate must be analyzed and labeled according to its pitch (assuming
that each element contains a single note and not, for instance, two
or more notes). Second, a critical parameter is the number M of
dictionary entries, which should be equal to the number of unique
notes present in the piece. Finally, some notes in the audio signal
can be reconstructed using multiple templates, which might lead to
undetected activations. In addition to these issues, the authors only
demonstrated the idea using one example piece; no systematic eval-
uations and comparisons were conducted. It should also be noted
that this approach uses short templates (128 ms) that do not capture
the temporal evolution of piano notes, and it also segments the audio
signal into frames that are analyzed independently.

4. PROPOSED METHOD

The proposed method is based on the efficient convolutional sparse
coding algorithm presented in [26]. A monaural, polyphonic audio
recording of a piano piece s[t] is approximated by a sum of dictio-
nary elements dm[t] representing each individual note of a piano,
convolved with activation vectors xm[t]:

s[t] '
∑
m

dm[t] ∗ xm[t]. (4)

A non-zero value at index t of an activation vector xm[t] represents
the activation of note m at sample t.



The dictionary elements are pre-learned in a supervised manner
by sampling each individual note of a piano at a certain dynamic
level, e.g., mf, see Fig. 1 for an example.

The activation vectors are estimated from the audio signal by
CBPDN as in (2). Note onsets are then derived from the activation
vectors by sparse peak picking, i.e., multiple activations of the same
note are not allowed inside a sparsity window of 50 ms; in case of
multiple activations, the earliest one is chosen as the right one. The
resulting peaks are also filtered for magnitude in order to keep only
the peaks which are higher than 10% of the highest peak in the entire
activation matrix. Fig. 2 shows the piano roll, the waveform, the raw
activation vectors and the estimated note onsets for a simple melody
of 5 notes (4 unique notes). Note that no non-negativity constraints
have been applied, so CBPDN can produce negative values in the
activation vector, even though the strongest peaks are generally pos-
itive.
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Fig. 1. Dictionary element for C4 from Steinway Concert Grand
Piano from the Garritan Personal Orchestra played at MIDI velocity
100.

5. EXPERIMENT

In the first experiment, we used the 30 MIDI files of the music
pieces in the ENSTDkCl collection of the MAPS dataset [28]. All
the pieces have been re-rendered from the MIDI files using a digital
audio workstation (Logic Pro 9) with a virtual piano plug-in (Stein-
way Concert Grand Piano from the Garritan Personal Orchestra); no
reverb was used at any stage. The MIDI files represent realistic per-
formances of the pieces and contain a wide range of dynamics; i.e.,
the MIDI files have been created starting from MIDI files available
on the Internet, which have been manually edited to adjust note lo-
cations, durations and dynamics to achieve more human sounding
performances. The dictionary elements were learned form the same
virtual piano but only at a fixed dynamic level (i.e., MIDI velocity
of 100). To reduce the computational cost and the memory footprint
of the proposed algorithm we downsampled all the audio record-
ings to 11,025 Hz and transcribed only the initial 30 s of each piece.
We compared the proposed method with a state-of-the-art algorithm
by Benetos [8], the best performer in MIREX 20131, which uses
PLCA in the frequency domain. Benetos’s method uses a constant-
Q transform (CQT) with a spectral resolution of 120 bins/octave and
an overlap of temporal atoms of 80% as a time-frequency represen-
tation. Each template is essentially the long term average spectrum
of each note in log-frequency. Note templates generated from the
sampled instruments are also pre-shifted in frequency to account for
vibrato, which is not an issue for piano music. We used the author’s

1http://www.music-ir.org/mirex/wiki/2013:
MIREX2013_Results
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(c) Raw activation vectors {xm}
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(d) Note onsets after sparse peak picking

Fig. 2. Piano roll, waveform, raw activation vectors and note onsets
for a simple melody of 5 notes, with 4 unique notes.

original implementation submitted to MIREX 2013. The dictionar-
ies for both methods have been generated from the same set of indi-
vidual notes rendered as before; the individual notes were 1 s long



Parameter Value
Sample rate 11,025 Hz
λ 0.05
Number of iterations 500
Initial ρ 100λ+ 1
Peak picking threshold 10% of maximum
Peak picking sparsity window 50 ms

Table 1. Parameters used in the experiment.

and were played at MIDI velocity 100. For the proposed method we
used the parameters listed in Table 1. The regularization parameter
λ has been empirically tuned to make the `2-norm and `1-norm in
(2) of the same order of magnitude.

Fig. 3 shows a comparison of the F-measures for Benetos and the
proposed method. The F-measure is calculated at the note level, us-
ing the onset only method with a tolerance of±50 ms. The proposed
method shows a dramatic improvement over the frequency domain
method, achieving a median F-measure of 93.6% versus 67.5% of
Benetos. Since both methods learn dictionaries from the same train-
ing notes, the performance difference shows that the time-domain
CSC method provides a richer model to recognize notes. The rea-
sons include better time resolution and better frequency resolution at
low frequencies, as illustrated in the following experiments. There
were only two pieces for which the proposed algorithm achieved an
accuracy lower than 80%, and they were characterized by a loud
melody played over an accompaniment of very fast, short and soft
notes. The notes in the accompaniment are very different from the
templates in the dictionary, and the difference in loudness is probably
greater than the threshold limit we chose. Using multiple dictionary
templates for the same note played at different dynamics might im-
prove the results for these cases. It should be noted that, except for
these two pieces, even though the dictionary contains templates of a
fixed length and a single dynamic, the proposed algorithm is capable
of generalizing to different note lengths and dynamics.

Although the comparison with Benetos’s method is fair, in the
sense that both algorithms were trained on the same individual sam-
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Fig. 3. Distribution of the F-measure for the 30 pieces in the ENST-
DkCl collection of MAPS. Each box contains 30 data points.
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Fig. 4. Onset difference from the ground truth for true positves.
Positive values indicate late estimated onsets.

pled notes, it should be noted that Benetos’s method is also capable
of generalizing to different pianos, as demonstrated by the results
in the MIREX competition, in which the transcription tests are per-
formed on pieces played on random instruments.

Fig. 4 shows the distribution of the onset difference of the esti-
mated notes from the ground truth, calculated for the true positives:
a positive value indicates that the estimated onset is later than the
ground truth. The proposed method is capable of producing sample-
precise activations in most circumstances.
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Fig. 5. Average F-measure per octave

Fig. 5 compares the average F-measure achieved by the two
methods along the different octaves of a piano keyboard (the first
octave is from A0 to B1, the second one from C2 to B2 and so on).
The distribution of the notes in the ground truth per octave is shown
in Table 2. The figure clearly shows that the results of the frequency-
domain method are dependent on the fundamental frequencies of the
notes; the results are very poor for the first two octaves, and increase



Octave Notes # of notes
1 A0-B1 74
2 C2-B2 497
3 C3-B3 1,822
4 C4-B4 2,568
5 C5-B5 2,035
6 C6-B6 302
7 C7-C8 57

Table 2. Notes in the ground truth per octave.

monotonically for higher octaves. The proposed method shows a
more balanced distribution. The poor performance for the last oc-
tave might be due to the low sample rate used for the experiment.
The sample rate was limited to 11,025 Hz to reduce the computa-
tional cost and the memory footprint of the proposed method. The
last octave ranges from C7, with a fundamental frequency of 2,093
Hz, to C8, with a fundamental frequency of 4,186 Hz, so only one
or two partials will be present in the signal.

To investigate octave errors, Table 3 shows the comparison of
the F-measure with the Chroma F-measure, i.e., all F0s are mapped
to a single octave before evaluating. There is a slight improvement
over the average F-measure in both methods, but the improvement
is slightly less pronounced for the proposed method, suggesting a
lower incidence of octave errors.

Benetos Proposed
F-measure 0.672 0.914
Chroma F-measure 0.691 0.930
Difference 0.019 0.016

Table 3. Average octave errors.

In the second experiment we tested the proposed method in a
more realistic scenario using a real acoustic piano. We used an
iPhone to record a baby grand piano in a recording studio. We
recorded all the 88 individual notes of the piano and tested the algo-
rithm on a simple piano piece, i.e., Bach’s Minuet BWV 114. Each
note was played for 1 s at a constant dynamic level of mf. The smart-
phone was placed on the right side of the piano case, roughly 10”
above the soundboard. The recording studio has absorbers on the
walls to reduce reverb. The ground truth was established by play-
ing the same piece on a MIDI keyboard then manually aligning the
note onsets of the recorded MIDI file with the audio recording. For
the algorithm we used the same parameters listed in Table 1. The re-
sults of the transcription are shown in Table 4. The proposed method
achieves nearly perfect results on this simple piece, showing that the
algorithm is not limited to synthesized sounds and that different in-
stances of the same note on a real piano are consistent at the signal
level.

Benetos Proposed
Precision 0.799 0.995
Recall 0.564 0.995
F-measure 0.661 0.995

Table 4. Results on a single piece on a real piano.

6. DISCUSSION AND CONCLUSION

In this paper we presented an automatic music transcription algo-
rithm based on convolutional sparse coding of a time-domain mu-
sical signal. The proposed algorithm outperforms a state-of-the-art
algorithm and shows a sample-precise temporal resolution, increased
resolution at lower-frequencies and reduced octave errors. The algo-
rithm shows generalization capabilities to notes of different length
and loudness, and an initial experiment shows that it is applicable to
real acoustics recordings and not limited to synthesized sounds.

The major limitations of the proposed algorithm are the com-
putational cost and the memory footprint of the sparse coding algo-
rithm. The transcription of 30 s of audio with the parameters shown
in Table 1 takes almost 30 minutes on average and uses 2.6 GB of
memory for the working variables, when using double precision.
The memory footprint grows linearly with the length of the signal
and with the number of elements in the dictionary. Another limi-
tation of the algorithm is the poor generalization capabilities of the
model, as the time domain representation of the audio is much more
specific than, for instance, its linear magnitude spectrogram. Prelim-
inary experiments on audio recorded on a different piano show a dra-
matic reduction in the performance. Finally, reverb, if not present in
the dictionary elements, makes the activation signal less sparse and
more difficult to analyze. Thus, future work is needed to adapt the
dictionary to a different instrument and to reverberant situations.
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