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ABSTRACT

Automatic music transcription (AMT) is the process of converting
an acoustic musical signal into a symbolic musical representation
such as a MIDI piano roll, which contains the pitches, the onsets
and offsets of the notes and, possibly, their dynamic and source
(i.e., instrument). Existing algorithms for AMT commonly iden-
tify pitches and their saliences in each frame and then form notes in
a post-processing stage, which applies a combination of threshold-
ing, pruning and smoothing operations. Very few existing methods
consider the note temporal evolution over multiple frames during
the pitch identification stage. In this work we propose a note-based
spectrogram factorization method that uses the entire temporal evo-
lution of piano notes as a template dictionary. The method uses an
artificial neural network to detect note onsets from the audio spec-
tral flux. Next, it estimates the notes present in each audio segment
between two successive onsets with a greedy search algorithm. Fi-
nally, the spectrogram of each segment is factorized using a discrete
combination of note templates comprised of full note spectrograms
of individual piano notes sampled at different dynamic levels. We
also propose a new psychoacoustically informed measure for spec-
trogram similarity.

Index Terms— Automatic music transcription, multi-pitch esti-
mation, spectrogram factorization, onset detection

1. INTRODUCTION

Automatic Music Transcription (AMT) is the process of extracting a
symbolic representation from a music audio file. The output of AMT
can be a full musical score or an intermediate representation, such as
a MIDI piano roll, which includes note pitches, onsets, offsets and,
possibly, dynamics and instruments playing the notes. The complete
AMT problem can be divided into several subtasks, not necessarily
in this order: multi-pitch estimation, onset/offset detection, loudness
estimation, source recognition, note tracking, beat and meter detec-
tion, thythm detection. The biggest efforts so far have been spent on
the multi-pitch estimation and onset detection stages [1].

Many music transcription methods attempt to identify pitches in
each time frame, and then form notes in a post-processing stage [1].
This approach, however, does not model the temporal evolution of
notes. We can call this approach frame-based transcription. Spectro-
gram decomposition-based approaches fall into this category. Non-
negative matrix factorization (NMF) is a method for factorizing a
large non-negative matrix into the product of two, low-rank non-
negative matrices [2][3]. NMF has been applied to source separation
and AMT [4]. For AMT, NMF is usually applied in a supervised
way by pre-learning a dictionary of templates in which each tem-
plate corresponds to the long-time average spectrum of a note. NMF
is computationally inexpensive, jointly estimates multiple pitches at

the same time and provides a salience of each estimated pitch with
its activation weight. One of the drawbacks of NMF is that it does
not model the temporal evolution of notes.

Piano notes are characterized by significant temporal evolu-
tions, in both the waveform and the spectral content. In particular,
different partials decay at different rates: higher frequency par-
tials decay faster than lower frequency ones [5]. There are very
few methods that consider temporal evolution of notes. A tensor
can be used to represent multiple vectors evolving in time, e.g.,
a dictionary of spectrograms. Non-negative tensor factorization
(NTF), an extension of NMF, has been applied to source separa-
tion and AMT [6][7][8]. An alternate formulation of NMF named
Probabilistic Latent Component Analysis (PLCA) was proposed by
Smaragdis et al. in 2006 [9]. PLCA is numerically equivalent to
NMEF but its formulation provides a framework that is easier to gen-
eralize and extend [9]. Grindlay and Ellis proposed a generalization
to PLCA to account for the temporal evolution of each note [10].

All the spectrogram factorization methods described in the pre-
vious paragraphs form notes in the post-processing stage. To our
knowledge, only one existing method exploits the percussive nature
of piano notes to detect the onsets from the audio signal as the ini-
tial step [11]. In this method, the algorithm first detects the note
onsets, then analyzes the audio signal between two successive on-
sets, assuming that the pitches do not change. We call this approach
note-based transcription, as opposed to frame-based transcription.

In this paper we propose a novel note-based spectrogram factor-
ization algorithm that exploits the temporal evolution of piano notes.
The method uses an artificial neural network to detect note onsets
from the audio spectral flux. Then, the notes present in each audio
segment between two successive onsets are estimated with a greedy
search algorithm. The log-frequency, linear magnitude spectrogram
of each segment is factorized by using a discrete combination of
note templates comprised of full note spectrograms of individual pi-
ano notes sampled at different dynamic levels. The use of full length
spectrograms as dictionary templates allows the algorithm to take
into account the temporal evolution of the notes. In the paper we
also investigate how the recording level, i.e., the global loudness, of
the audio signal and the different dynamic levels used to play each
note, i.e., the local loudness, affect the pitch estimation, and we pro-
pose a method to reduce the dimensionality of the search space by
separating the estimation of these two parameters.

2. RELATION TO PRIOR WORK

The proposed method builds on and expands existing spectrogram
factorization techniques. The key idea of the proposed method is
to combine a note-level transcription with a factorization algorithm
exploiting the temporal evolution of piano notes.



Existing spectrogram factorization techniques originated and
stemmed from NMF [1]. An alternate formulation of NMF, named
Probabilistic Latent Component Analysis (PLCA), was proposed
by Smaragdis et al. in 2006 [9]. PLCA is numerically equivalent
to NMF but its formulation provides a framework that is easier
to generalize and extend [9]. A notable extension to PLCA was
proposed by Benetos and Dixon in 2012 [12]; in their formulation,
the authors extend asymmetric PLCA to accommodate for different
instrument sources and for pitch shifting. Grindlay and Ellis pro-
posed a different generalization to PLCA to account for the temporal
evolution of each note [10], using dictionary templates consisting of
long spectrograms. In this paper, we adopt a similar idea, but we
use a discrete combination of templates to reduce the dimensionality
of the search space. Another AMT method exploiting the temporal
evolution of notes, called harmonic temporal structured clustering,
was proposed by Kameoka et al. [13]. This method jointly estimates
multiple notes and their onsets, offsets and dynamics using a maxi-
mum likelihood estimator. The method proposed in this paper uses
two separate stages to detect onsets and to estimate the pitches.

A separate onset detection stage has been proposed in previous
AMT systems. SONIC, a relatively old but still competitive piano
transcription system, uses an onset detection stage to improve the
performance of the algorithm [14]. However, the results of the onset
detection are only used in the post-processing stage and not in the
pitch estimation process, which is frame-based. The method pro-
posed by Constantini et al. [11] uses an initial onset detection stage
that feeds its output to the pitch estimation stage, but only consid-
ers a single window of 64 ms after the onset for the pitch estimation.
The proposed method utilizes the entire portion of the audio between
two successive onsets and also analyzes the temporal evolution of the
notes in identifying pitches.

3. PROPOSED METHOD

The proposed method operates in two stages: onset detection and
pitch estimation. The first stage analyzes the audio file looking for
note onsets. The percussive nature of the piano helps to detect the
onsets, even at softer dynamics. Onsets temporally close enough can
be considered as a single onset without excessive loss of precision
in the following stage. The second stage analyzes the audio between
two successive onsets and identifies the pitches in the segment by
decomposing the spectrogram into a summation of note templates.
Each template is a spectrogram of a note with a certain dynamic,
and is learned from a database of isolated piano note samples. A
greedy algorithm and a psycoacoustically motivated similarity mea-
sure were proposed for the decomposition.

3.1. Onset detection

Onset detection is another challenging problem in computer audi-
tion, and several different methods have been proposed to address
it [15]. SONIC uses a feedforward neural network for the onset de-
tection stage [16]. Eyben et al. proposed a universal onset detection
method based on bidirectional long short-term memory neural net-
works [17]. The usage of recurrent neural networks instead of feed-
forward networks improves the performance of the detection stage
because the network can take into account the temporal evolution of
the notes and adapt itself to the context in the musical piece. The
drawback of this approach is the complexity of the model. In this
paper we use a nonlinear autoregressive network with exogenous in-
puts (NARX), which produces better results than a simple feedfor-
ward network, but with a simpler model than Eyben’s.

The neural network is used to analyze the normalized spectral
flux of the audio input. The linear magnitude spectrogram from the
original audio is generated using STFT of 46.4 ms, Hamming win-
dow and a hop size of 2.9 ms. The spectral flux is calculated by
summing all the positive bin-to-bin differences between two succes-
sive frames. The very short hop size is necessary to obtain a high
time resolution, which is critical for the pitch estimation stage.

The normalized spectral flux is then processed by a nonlinear au-
toregressive network with exogenous inputs (NARX) with two hid-
den layers, with 18 and 15 neurons respectively, and 4 delays (see
Fig. 1). The neural network has been trained on 10 pieces from
the Disklavier Ambient corpus of the MAPS database [18] using the
Levenberg-Marquardt algorithm. The 10 pieces had a combined to-
tal length of 2,840 s and a combined total of 11,630 onsets.
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Fig. 1. Recurrent neural network for onset detection.

3.2. Pitch estimation
3.2.1. Dictionary creation

The dictionary of templates is generated from the University of lowa
Musical Instrument Samples', in which the individual notes of a pi-
ano have been recorded at three different dynamic levels, i.e., pp,
mf and ff. Each note template is a log-frequency, linear magnitude
spectrogram, and is calculated using a constant Q transform (CQT)
with 36 bins per octave and a hop size of 23.2 ms. All templates are
limited to 128 frames, corresponding to about 3 s. The raw spec-
trograms contain significant energy due to resonance and reverb of
the keystroke so we filter the spectrogram to only keep the active
partials, i.e., partials of currently active notes. We found that the
amplitude evolution of active partials can be approximated by a sum
of two decaying exponentials

A(t) = ae® + be, (1)

while non-active bins show a more noisy, random or oscillatory en-
velope, as shown in Fig. 2. The spectrogram is initially filtered with
a median filter operating over the frequency axis with a window of 3
bins; then, using a curve fitting algorithm, only the bins that can be
properly approximated by (1) are retained. All the other bins are set
to 0. The results of the filtering are illustrated in Fig. 3. The filtered
spectrograms are also normalized and quantized to 16-bit integers to
optimize the memory footprint and speed up computation.

3.2.2. Pitch estimation algorithm

Each individual inter-onset audio segment is modeled as a discrete,
additive combination of templates with the same dynamic from the
dictionary, scaled by a global gain factor. The model only takes into
account newly activated notes, i.e., partials belonging to notes played
in a previous segment are filtered out. We assume that all the notes

"http://theremin.music.uiowa.edu/MIS.html
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Fig. 2. Comparison of an active partial versus a non-active frequency
bin in a piano note.
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Fig. 3. Dictionary templates contain full length spectrograms of pi-
ano notes.

in a single audio segment are played at the same dynamic level — this
helps to rule out the interference of the reverb of previous notes. The
global gain factor accounts for the loudness of the recorded audio,
e.g., close microphones versus far microphones or gain adjustment
in post-production. We assume that the general loudness does not
change for the entire duration of a single piece. Finally, the model
does not attempt to determine note offsets.

A spectrogram with the same parameters is generated from each
segment detected in the previous step and it is filtered using the same
approach used in Section 3.2.1. In most piano pieces, notes do not
always start and end at the same time. So it is possible that new notes
are played while old notes are still playing, e.g., a fast melody played
on the right hand over longer chords played on the left hand. Active
partials from old notes will then be present in the spectrogram of
successive segments. To avoid the interference of these partials, we
filter them out by comparing the first three frames of each segment
with the last three frames of the previous one. For each active partial,
we take the median of the magnitude in each segment. If the median
value in the new segment is smaller than the median in the previous
segment, the partial is assumed to be a continuation of a previously
active partial and we set the entire frequency bin to 0.

Given a spectrogram difference measure (as described in Sec-
tion 3.2.3), a greedy algorithm is used to find the combination of
templates that minimizes the difference between the segment spec-
trogram and the reconstructed spectrogram with templates. A piano
piece has a maximum polyphony of 10 notes, i.e., each single seg-
ment can only contain 10 active notes (this excludes four-hand piano

performances and special playing techniques, such as large cluster
chords played with the forearm). A concert piano has 88 different
keys. The dictionary has 3 templates per note giving a total of 264
templates. The possible combinations to test are given by

88 88 88\ _ 12
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The search space is too big for an exhaustive search, so a greedy
algorithm is used instead. The greedy algorithm compares the spec-
trogram to each template in the dictionary and computes the corre-
sponding cost function for reconstruction. The combination of note
and dynamic with the lowest cost is selected. The dynamic level is
fixed for the successive iterations. Then the algorithm tries to add
a second note and, if the cost function decreases by at least 5%, the
second note is selected. The algorithm stops when an additional note
does not lower the cost function. All templates are truncated at the
end to have the same length as the audio segment during the recon-
struction.

We also considered a global optimization approach, i.e., non-
negative tensor factorization, but we preferred a greedy approach in-
stead, which has two main advantages: computational efficiency and
discrete reconstruction. Each update iteration of NTF is computa-
tionally equivalent to an iteration of our greedy algorithm, but NTF
generally requires tens of iterations to converge, while our greedy
approach only needs a number of iterations up to the polyphony of
the piece. The greedy approach also combines pitch and polyphony
estimation in a single stage, while NTF requires a separate thresh-
olding for the salience coefficients. The binary output of the greedy
algorithm has the additional advantage of being categorical, i.e., each
note is either active or not.

3.2.3. Spectrogram similarity

The spectrogram similarity is measured using a cost function derived
from an L?-norm scaled by a factor that depends on the amplitude
of the spectrogram. Given V, the spectrogram of the original au-
dio, and R, the reconstructed spectrogram, the difference of the two
spectrograms is measured by

_ CYVij - Rij ?
DwvilR) = Z (loglo(vij +1) + 1) ’ @

ij

where « is the global gain scale factor; ¢ and j are frequency and
time indices.

This cost function was tested after poor results were obtained
with L'-norm, L?-norm and KL-divergence. The metric was moti-
vated by signal processing and psychoacoustical evidence. Given a
spectrogram to model, a reconstructed spectrogram should have
the same amount of energy as the model spectrogram at each
time/frequency point. The error between the reconstructed spec-
trogram and the original spectrogram should be weighted according
to the energy present in the original spectrogram, i.e., the error
should be calculated as percentage variation. The logarithm in the
scaling factor mimics the dB scale, while the addition of 1, before
and after taking the logarithm, gives always a strictly positive value.

4. EXPERIMENT

We conducted three sets of experiments and compared the results
against two state-of-the art transcription systems, Benetos’s [12], the



Precision | Recall F
Benetos 0.580 | 0.498 | 0.534
Proposed (a = 1, mf only) 0.618 | 0.504 | 0.555
Proposed (a = 1, pp, mf, ff) 0.736 | 0.455 | 0.562
Proposed (o = 2.8, pp, mf, ff) 0.674 | 0.609 | 0.640

Table 1. Results for the 100 random chords.

best performer in MIREX 2013, and SONIC [14], a less recent but
still competitive piano transcription system. We used the original im-
plementations for both methods. For the experiments, an estimated
note is considered correct if the MIDI number corresponds to the
ground truth MIDI number and its onset is within 50 ms from the
ground truth; note offsets are not considered for the evaluation.

For the first experiment we took 100 random chords from [19],
10 chords for each polyphony from 1 to 10, with normal playing
style. For this experiment we investigated the role of dynamic and
loudness and how they affect the performance of the algorithm. We
tested the proposed multi-pitch estimation algorithm with a dictio-
nary containing only the mf dynamic and with all three dynamics,
pp, mf, and ff. The results are shown in Table 1. The usage of mul-
tiple dynamics increases the level of precision by nearly 12% while
reducing the level of recall by almost 5%. The F-measure is also
slightly improved. We also tested different levels of gains for the
original audio. We scaled the original audio by a series of factors,
starting from 0.5 to 3.0 with an increment of 0.1. The best results
were obtained with a gain of 2.8. This gain reduces the precision
by about 6% but dramatically increases the recall by almost 15%.
As aresult, the F-measure is increased by almost 9%. This suggests
that the correct recording level is very important for the proposed
method, which is not surprising since the reconstruction of the spec-
trogram is done as a discrete combination of dictionary templates,
i.e., a template is either added or not. A template with the right shape
but different level will not be considered a good match by the simi-
larity function. Also, in this case, the audio was most likely recorded
at a lower level than the notes used for the dictionary; boosting the
level of audio increases the recall because more templates from the
dictionary can be properly matched, but it probably also introduces
more noise and reverb that decrease the precision. We compared
the proposed algorithm with Benetos’s. The proposed method out-
performs Benetos’s in precision and F-measure. This suggests that
considering the temporal evolution of the notes provides a better es-
timation.

For the second experiment we tested the 3 considered algorithms
on the 30 pieces in the “Ambient” collection of MAPS [18]. This col-
lection, being recorded in a reverberant ambient with microphones
placed at 3-4 meters from the source is considered a more challeng-
ing testbed than audio recorded with microphones at close position,
but it reflects a more realistic condition when dealing with recorded
audio. The SONIC algorithm outperforms both Benetos’s and the
proposed algorithm in Precision, Recall and F-measure. The results
are shown in Table 2.

The performance of the proposed method are most likely limited
by three factors: the onset detection stage (see the results of the next
experiment), short notes and recording level. Short notes, i.e., notes
with a duration of less than 50ms, are poorly estimated by the algo-
rithm, as the corresponding spectrogram is only 1 to 3 frames long;
the proposed filtering method is not effective under these circum-

’http://www.music—ir.org/mirex/wiki/2013:
MIREX2013_Results

Precision | Recall F
Benetos 0.528 0.382 | 0.443
SONIC 0.627 | 0.530 | 0.574
Proposed (o = 1, pp, mf, ff) 0.438 0.302 | 0.345

Table 2. Results on MAPS dataset.

Precision | Recall F
SONIC 0.727 | 0.719 | 0.723
Proposed (o = 1) 0.865 | 0.619 | 0.722

Table 3. Results for the onset detection.

stances, and the long term evolution of the notes cannot be properly
modeled. We tried to find the optimal gain, as we did in the previous
experiment, but the results were inconclusive. This suggests that the
pieces in MAPS were recorded with different setups or the gain was
optimized in post-production.

For the last experiment we tested the performance of the onset
detection stage and compared its results with SONIC. Since in our
approach an onset detection error (false alarm or miss) will always
incur one or more transcription errors, we conducted this experiment
to isolate onset detection errors from the overall music transcription
errors. SONIC is only available in executable format, so we could
not compare the results of our onset detection algorithm with their
detection stage directly. Instead, we took the output of SONIC, a
fully transcribed MIDI piano roll, and extracted the note onsets from
there. The results on the 30 pieces in the “Ambient” collection of
MAPS are shown in Table 3. The proposed method has a better
precision than SONIC and a comparable F-measure. Still the over-
all performance is not satisfactory, and this might be another rea-
son for the poor performance of the proposed method in the general
transcription case compared to the performance in transcribing the
chords.

5. CONCLUSIONS

We presented a new model for the challenging problem of automatic
piano transcription. The proposed method performs a note-based
transcription and matches the performance of state-of-the art algo-
rithms in single-chord multi-pitch estimation and outperforms them
in the best case scenario, in which the global gain of the recording
matches the recording level of the templates.

Implementing a better onset detection stage seems a reasonable
next step in order to improve the overall recall rate. A possible so-
lution for the poor estimation of short notes would be to create a
dictionary with increased resolution, i.e., shorter hop length, to be
used when the time between two successive onsets is below a certain
threshold. The biggest challenge is the estimation of the global gain,
which plays an important role in the performance of the algorithms.
A possible approach would be to iteratively try different gain levels
and select the one that minimizes (3).
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