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ABSTRACT

In this paper, we propose an approach for global HRTF personalization employing subjects’ anthropometric
features using spherical harmonics transform (SHT) and convolutional neural network (CNN). Existing methods
employ different models for each elevation, which fails to take advantage of the underlying common features
of the full set of HRTF’s. Using the HUTUBS HRTF database as our training set, a SHT was used to produce
subjects’ personalized HRTF’s for all spatial directions using a single model. The resulting predicted HRTFs have
a log-spectral distortion (LSD) level of 3.81 dB in comparison to the SHT reconstructed HRTFs, and 4.74 dB
in comparison to the measured HRTFs. The personalized HRTFs show significant improvement upon the finite
element acoustic computations of HRTFs provided in the HUTUBS database.

1 Introduction

The Head-related Transfer Function (HRTF), a descrip-
tion of how a human receives sound from various spa-
tial directions [1], is unique to each listener and is
vital for accurate virtual acoustic display [2]. Due
to its uniqueness, using a generic HRTF for virtual
acoustic display may result in compromised results,
leading to diffuse or displaced auditory images. Stud-
ies have shown that individualized HRTF can improve
the localization accuracy and users’ immersive experi-
ences [3, 4]. Ideally one would like to have a person-
alized HRTF for every listener, however, measuring a
subject’s HRTF requires specialized equipment and is a
time-consuming process [1]. Thus, it is desirable to ob-
tain personalized HRTFs without the need for making

extensive acoustic measurements.

An individual’s HRTF is comprised of a set of acoustic
transfer functions that contain both spatial and temporal
information. Recent efforts in HRTF personalization
from physical appearances [5, 6, 7] mostly were based
on data-driven approaches, aided by acoustics model-
ing. To efficiently link a person’s physical features to
the features of HRTF, a great amount of dimension re-
duction is needed, as the data represented in an HRTF
has a much higher dimensionality in comparison to
anthropometric measurements. To address this issue,
some existing work on HRTF personalization focuses
only on a small portion of HRTF directions (e.g., frontal
or 0 degree elevations) or uses different machine learn-
ing models for different azimuths and elevations. In
addition, the source location grid used in many pub-
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licly available HRTF databases differs from database to
database, which limits the format of HRTF prediction
results to the given source grids. Therefore, it would
appear to be advantageous to include the information
of all spatial directions into a single model, regardless
of the grid employed in the HRTF training dataset.

An HRTF can be viewed simply as a function defined
on a spherical surface. The Head-Related Impulse Re-
sponse (HRIR) (simply the Fourier transform of the
HRTF) for each direction is made between an external
sound source to a microphone at the entrance of the ear
canal [1, 8]. Employing acoustic reciprocity principle,
the same impulse responses would be obtained if the
source were at the opening of the subject’s ear canal,
and receivers were located at each of the sound source
locations. To represent such patterns on a spherical
surface, spherical harmonics (SH) basis functions are a
natural choice.

It has been shown that human listeners are insensitive
to smoothing of fine structure in their HRTF. Previous
research employed various smoothing methods to vali-
date this observation with perceptual tasks. Kulkarni
and Colburn [2] proposed a smoothing method based on
coefficient truncation of the Fourier series expansion to
the log-magnitude spectrum of HRTFs. Hacihabiboglu
et al. [9] proposed wavelet-based spectral smoothing in
HRTF filter design, and Romigh et al. [10] designed an
efficient spherical harmonic transform based HRTF
smoothing representation. These results show that
smoothed versions of a listener’s HRTF remain percep-
tually relevant, and suggest the viability of lower-order
representations of HRTF’s.

Based upon this previous work, we hypothesize that
a HRTF reconstructed from a truncated SH expansion
are perceptually indistinguishable from the original
HRTF. Since SH coefficients efficiently capture the
global structure of an HRTF in a low-dimensional rep-
resentation, we believe it may serve as an effective tool
for personalizing HRTF’s.

In this paper, we propose an HRTF personalization
method for arbitrary directions using a spherical har-
monics transform (SHT) representation. We use an-
thropometric measurements provided by the HUTUBS
database [11] and frequency information to predict SH
coefficients. Predicted HRTF’s were reconstructed for
test data taken from the HUTUBS dataset and the devi-
ations from measured HRTF’s were assessed.

The remainder of the paper is organized as follows: In
Section 2, we present related work on HRTF personal-
ization. We describe our proposed method in Section 3
and experimental details are given in 4. The results
and their assessment are given in Section 5, and we
conclude our paper in Section 6.

2 Related Work

2.1 Global HRTF representation

Given the high dimensionality of HRTFs and wide vari-
ation of anthropometric features across different sub-
jects, it is challenging to predict a person’s entire HRTF
set, thus the motivation to seek a low-dimensional
representation of the HRTF. One may assume that
it would be possible to find a low-dimensional rep-
resentation since there is redundancy in the set of
HRTF’s [2, 12]. Various approaches to dimension
reduction have been explored, such as principal com-
ponent analysis (PCA) [13, 14] and acoustic pole &
zero models [15]. Among these, a truncated spherical
harmonics representation seems to provides an intuitive
method for representing the most salient features of an
HRTF [16, 17, 18].

Specifically, the SHT preserves global spatial features
in a low order, compact representation of the entire
HRTF set. Following previous work [18], we adopt the
SHT representation to achieve dimension reduction.

2.2 HRTF personalization

HRTF personalization using anthropometric measures
is an emerging topic of interest and methods using an-
thropometric parameter matching [19, 20, 21], spectral
notches [22], or pinna shape [23] have been described.

Several investigations of HRTF personalization em-
ploying machine learning also have been published.
The common practice is to learn a low-dimensional
representation of HRTF and then to predict that repre-
sentation for test data using anthropometric features.
Other researchers proposed regression algorithms to
predict HRTF dimension reduced by PCA [24] and
Isomap [25].

Deep learning methods have pushed the limits of HRTF
personalization in recent years. Chun et al. [5] pro-
posed a deep neural network (DNN) based method that
predicts the head-related impulse response (HRIR) us-
ing anthropometric measurements. Lee & Kim [26]
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proposed a deep learning approach to personalize
HRTFs using anthropometric measurements and im-
ages of the ears. Chen et al. [6] proposed a DNN-based
approach but used different models for different direc-
tions. They first trained an encoder-decoder network to
learn the latent representation of a set of HRTFs, then
a DNN is trained to map the anthropometric measure-
ments to the latent representation. Finally, the DNN is
fine-tuned jointly with the decoder. Miccini & Spag-
nol [7] extended their method with the use of a convolu-
tional variational autoencoder and includes depth maps
of a 3D head model as input. However, the three-stage
training in this approach is cumbersome and may lead
to suboptimal solutions.

Although some of the work described above has
achieved acceptable results for predicting HRTF’s, they
are limited to HRTF prediction for certain directions.
To our knowledge, global HRTF prediction has not
been accomplished with a single model. The method
in [7] can be extended to make global predictions by us-
ing a separate model for each direction, but this would
be complex and does not consider the intrinsic connec-
tion between different directions. Recently, Zhang et
al. [27] proposed HRTF personalization modeling in ar-
bitrary spatial directions based on spatial PCA. As PCA
methods may ignore the intrinsic connection between
spatial information and undermine the phase warping,
a large number of principal components are needed
to maintain the variance in reconstructed HRTFs. In
contrast, SH-based methods offer more compact HRTF
representation. It was shown in [18] that using 4th
order SHT (i.e. with 25 SH coefficients), the recon-
structed HRTF is perceptually indistinguishable from
the original measured HRTF. Therefore, the SH basis
apparently is an efficient means to capture the impor-
tant spatial features of HRTFs.

3 Method

We adopt an SH-based method to extract low-
dimensional features to represent HRTF. The HRIR
is processed in a perception-inspired way to obtain the
HRTF at different frequencies. A deep learning model
is designed to predict the SH coefficients using anthro-
pometric measurements and frequency information.

3.1 Feature extraction with SHT

Spherical harmonics (SH) are a set of orthogonal bases
for the spherical coordinate system and have been

Fig. 1: SH bases up to L = 4. Numbers in parenthesis
are order l and degree m, where −l 6 m 6 l.
Note that the total number of bases is (L+1)2.

widely adopted in the field of spatial audio. The spher-
ical harmonic basis of l-th order and m-th degree at a
certain spatial location is computed as

Y m
l (θ ,ϕ) =

√
(2l +1)

4π

(l−m)!
(l +m)!

Pm
l (cosθ)eimϕ , (1)

where θ ,ϕ are the azimuth and elevation angles in the
spherical coordinate system. Pm

l (cosθ) is associated
Legendre polynomial. The real parts of SH bases of
the first 4 orders are listed in Figure 1.

The process of SHT is to compute coefficients of each
SH basis function, and in practice we follow the method
in [18]. The SH coefficients are estimated by solving
a system of linear equations (2) using S discretized
samples, one for each spatial location {θi,ϕi}S :

fff === YYY ccc (2)

where

fff = [ f (θ1,ϕ1) , . . . f (θS,ϕS)]
T

ccc = [C00,C1−1,C10,C11, . . .CLL]
T

YYY = [yyy00,yyy1−1,yyy10yyy11, . . .yyyLL]

and

yyylm = [Ylm (θ1,ϕ1) , . . . ,Ylm (θS,ϕS)]
T

(3)

In Eq. (3), fff contains the original magnitude values
on S spatial directions, ccc is the desired SH coefficients,
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and YYY contains SH base values of up to order L at the
corresponding source spatial directions. To compute
coefficient vector ccc, we used least square fit approach:

ccc =
(
YYY TYYY

)−1
YYY T fff (4)

In our approach, a SHT was performed for each fre-
quency to truncation order L = 7, which is higher than
the perceptual spatial resolution according to previous
related work [18]. For each frequency of a subject’s
HRTF, a magnitude operation is performed to compen-
sate for the perceptual sensitivity of loudness. We use
the real part of the spherical harmonics to perform the
SHT on each HRTF magnitude pattern, and obtain the
coefficients (ccc vector) of each SH base. By concatenat-
ing SH coefficients of each frequency bin, we obtain a
lower-dimensional representation of the HRTF dataset,
which is used as the reference training target for deep
learning.

3.2 Perception-inspired data preprocessing

To predict a statistical and perceptual viable result, we
employ our understanding of the human auditory sys-
tem in the data processing steps to convert the HRIR’s
to HRTF’s. Specifically, we employ the concept of
critical bands that describe the frequency bandwidth of
the effective auditory filters of the cochlea [28], which
play an important role in auditory masking. Moreover,
for loudness perception, the human auditory system
responds logarithmically. These perceptual features
were incorporated in the data pre-processing step. The
original HRTF data set provided the measured impulse
response in sofa formats, and the corresponding fre-
quency magnitude value was converted to a dB scale
and sampled at the center frequencies of the auditory
critical bands.

3.3 Deep learning model design

A deep learning-based model is designed to map the an-
thropometric measurements to the SH representation of
the HRTF. The model structure is illustrated in Figure 2.
We consider the frequency and ear as side information
and feed them into fully connected (FC) layers to ob-
tain their embedding. The ear, head, and torso mea-
surements are also fed into FC layers to encode that
information. We then concatenate these output encod-
ings and use another FC layer to fuse the information.
Then the latent encoding is fed into several layers of

the 1D convolutional neural network (CNN) to predict
the SH coefficients. The training loss is calculated with
the mean square error (MSE) of the ground-truth SH
coefficients and the predicted SH coefficients.

Ear 
Measurements

Head & Torso 
Measurements

Frequency 
Index

Ear  
(left or right)

FC

FC

FC

FC

FC Latent 
Encoding

Conv1d 
Layers

SH 
Coefficients

Fig. 2: The data-flow diagram of predicting SH coeffi-
cients. The predicted SH coefficients are then
used to reconstruct HRTF through inverse SHT.

4 Experiments

4.1 Dataset

We use the HUTUBS dataset [11] to perform our ex-
periments. It has 96 subjects where 93 of them have
complete anthropometric measurements, so we use the
93 subjects to construct our dataset. It also provides an
acoustic boundary element method simulated version
of the HRTF for each subject.

A particular advantage in choosing this database is its
440-point near-uniform sampling scheme that covers
the complete spherical surface, which guarantees non-
aliasing of the SHT for up to 16th order. The number of
subjects is large compared to existing datasets, which
would benefit the training of deep learning models. The
simulated HRTF in HUTUBS also enables us to inves-
tigate whether our prediction results are better than the
simulation results in terms of spectral distortion.

4.2 Implementation details

For anthropometric measurements, we normalize the
original measures according to the procedure in [6]:

x̄i =

(
1+ e−

(xi−µi)
σi

)−1

(5)

where xi is the i-th measure of the ear or head & torso
measurements, and µi and σi are the mean and standard
deviation across all the training subjects, respectively.
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For each subject in the HUTUBS dataset, the ear mea-
surement is a 12-d vector for each ear and the head
& torso measurement is a 13-d vector. When estimat-
ing the SH coefficients of one ear, we ignore the ear
measurement from the other ear. The normalized mea-
surement vectors are then fed into corresponding FC
layers. The frequency index is encoded as a one-hot
vector to be fed into the FC-Frequency layer. Another
one-hot vector indicating whether the anthropometric
measurements are from the left or right ear is fed into
the FC-EarLR layer. The details of our model and the
hyperparameter of the corresponding layers are set as
in Table 1.

Table 1: Details of the architecture of the proposed
deep network. (Each 1D convolution layer
is followed by layer normalization [29] and
rectified linear unit (ReLU) activation [30].)

Layers Kernel Stride Output Shape
FC-EarMeasure / / [B, 32]
FC-HeadMeasure / / [B, 32]
FC-Frequency / / [B, 16]
FC-EarLR / / [B, 16]
FC-Fusion / / [B, 256]
Unsqueeze / / [B, 1, 256]
Conv1D-1 7 3 [B, 4, 84]
Conv1D-2 5 2 [B, 16, 40]
Conv1D-3 5 2 [B, 32, 18]
Conv1D-4 5 3 [B, 32, 5]
Conv1D-5 5 2 [B, 64, 1]

We implement our deep learning method with PyTorch.
The batch size B is set to 1024. The learning rate is
initially set to 0.0005 with 20% decay for every 100
epochs. We train the network for 1000 epochs on a
single NVIDIA GTX 1080 Ti GPU. The time cost for
each training-evaluation round is around half an hour.
Finally, we select the model with the lowest validation
loss for evaluation. Our source code is released in
https://github.com/YuriWayne42/hrtf_
sht_personalization.

4.3 Objective evaluation

The commonly used log-spectral distortion (LSD) is
adopted to evaluate the performance of our proposed

method. The LSD can be formulated as:

LSD(H, Ĥ) =

√√√√ 1
SK ∑

s
∑
k

(
20log10

∣∣∣∣H(s,k)
Ĥ(s,k)

∣∣∣∣)2

(6)

where s indicates the spatial location, k indicates the fre-
quency index. S and K are the numbers of spatial loca-
tions and frequencies, respectively. H(s,k) and Ĥ(s,k)
denote the magnitude of the ground-truth HRTF and the
predicted HRTF, respectively in the linear scale. When
the S spatial locations cover the entire discretized space,
the LSD evaluates global performance. In our exper-
imental setup, the HRTFs were processed using a dB
scale to take account of the perceptual considerations
described in Section 3.2. Therefore, our calculation of
LSD is the root mean square error of the HRTF.

Instead of directly predicting HRTF, we predict the SH
coefficients ĉcc. Hence, we multiply the SH base val-
ues YYY with the coefficients ccc to compute the predicted
HRTF according to Eq. (2). The ground-truth HRTF
for comparison is also calculated from the ground-truth
SH coefficients ccc.

Since the HUTUBS dataset is not large enough to have
the regular train/val/test split, we adopt leave-one-out
cross-validation in our study as employed in [6].

5 Results and discussions

In this section, we evaluate the performance of our
approach. We report the HRTF preprocessing results
in 5.1, show the HRTF personalization results in 5.2,
conduct an ablation study for global HRTF personal-
ization in 5.3, and describe the limitations and future
work in 5.4.

To clarify, we will use the following terms for demon-
stration. The predicted HRTF means the HRTF re-
constructed from the predicted SH coefficients. The
smoothed HRTF means the HRTF reconstructed with
the ground-truth SH coefficients. The smoothed HRTF
is not used during training. The original HRTF means
the measured HRTF from the dataset.

Note that the LSD values we report are all averaged
across subjects (i.e. across different training-evaluation
rounds). As in a leave-one-out fashion, we leave one
subject for test and use all others to train the deep
learning model, for each training-evaluation round.

AES 150th Convention, Online, 2021 May 25–28
Page 5 of 9

https://github.com/YuriWayne42/hrtf_sht_personalization
https://github.com/YuriWayne42/hrtf_sht_personalization


Wang et al. Global HRTF Personalization

5.1 HRTF preprocessing results

To demonstrate that the SHT is an effective way to rep-
resent HRTFs with global information from all spatial
directions, we plotted the SHT result performed on a
certain frequency (around 7kHz) of the HRTF magni-
tude pattern of one subject in the database in Figure 3.

(a) Original HRTF magnitude directivity (b) Magnitude comparison 

(c) Smoothed directivity (7th order SHT) (d) Coefficients of the SH bases

Fig. 3: Example of HRTF and SHT reconstruction re-
sult in linear scale.

In sub-figure (a), the HRTF pattern was plotted in a
spherical coordinate system, assigning the magnitude
as the distance from each corresponding source loca-
tion to the origin. The colormap was also assigned
according to the magnitudes. In (b) we show the com-
parison of magnitudes (original and the reconstruction)
across all 440 source locations. In (c), the reconstructed
pattern is plotted from the SHT of the 7th order, and
(d) shows the results of (L+1)2 = 64 SH coefficients.

Note that the reconstructed spatial formation is in fact
smooth compared to the original values due to the trun-
cation of the SHT. The SH truncation order was set to
seven, which is still higher than the perceptual viable
spatial resolution, according to previous related work
[18]. Based on our calculation, the smoothed version
introduced minimum spectral distortion, which also
validates previous research that this distortion level is
perceptual indistinguishable. For each frequency of a
subject’s HRTF, a magnitude operation is performed to
compensate for the perceptual sensitivity of loudness,

a set of 64 SH coefficients are produced according to
the magnitude layout.

By observing the coefficients of the SH bases across
different subjects, we hypothesize that the coefficients
follow a normal distribution across subjects under one
frequency and one ear condition, expressed in Eq. (7).

ccc∼ N (µ,σ | k) (7)

We then conduct a normality test [31]. The p values for
rejecting the null hypothesis that the SH coefficients
come from a normal distribution under different fre-
quencies are all less than 0.05, verifying our hypothesis
in Eq. (7). We believe that with this property, it is
easier for the deep learning model to predict SH coef-
ficients, compared to directly predicting HRTFs using
anthropometric measurements.

5.2 HRTF personalization results

To demonstrate the efficacy of personalization model-
ing, a comparison of a typical smoothed, predicted, and
simulated HRTF is shown in Figure 4, as we examine
the frontal direction where s = (θ ,ϕ) = (0,0).

Fig. 4: Comparison of smoothed, predicted and sim-
ulated HRTF at the frontal direction, where
s = (θ ,ϕ) = (0,0). Frequency and magnitude
axes are both shown in the log scale.

From the figure, we show that our predicted HRTFs
follow the trend of the smoothed HRTFs. The simulated
version has a similar trend, but deviates significantly
from the other two, especially at frequencies above 6
kHz. We calculate the LSD of our predicted HRTF and
simulated HRTF, both compared with the smoothed
HRTF, for all subjects. The predicted HRTF has 4.06
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dB LSD while the simulated HRTF has 7.99 dB LSD.
While the acoustic simulation results are affected by
the limited resolution of the geometric model and the
accuracy of simulation solver, the method explored
here is free from this limitation and seems to produce
better results.

To verify the global performance of the prediction
across all spatial directions, we report the predicted
result with the smoothed HRTF, averaged across sub-
jects. Although our method is able to predict HRTFs
for arbitrary spatial directions, we evaluate our error
according to the measured HRTF source grid. The
LSD we achieved is 3.81 dB compared to the smoothed
HRTF. Even compared with the original HRTF, the
LSD still achieves 4.74 dB. Note that due to the dif-
ference in sampling grid in the simulation, we do not
include simulated HRTFs in the global comparison.

Since our method can produce personalized results for
arbitrary direction, we also examine the LSD perfor-
mance in different spatial directions. The standard
deviation of LSD across all source locations is 0.30 dB.
This shows that the performance is robust to direction
changes, validating the nature of SHT as a viable global
representation method.

To the best of our knowledge, there has been little or
no work performing HRTF personalization using the
HUTUBS dataset. We notice that [6] is the closest
work since they use only anthropometric data to predict
HRTFs, although they use a different dataset CIPIC [8].
However, they only perform HRTF personalization for
one elevation angle instead of global, and they use
different models for different azimuth angles. They
achieved 3.25 dB LSD when comparing with smoothed
HRTF magnitude spectra with a constant-Q filterbank.
Note that the dataset is different, but we believe that
our method has a comparable level of performance, and
has the advantage of being able to make global HRTF
predictions.

5.3 Ablation study

To further verify the effectiveness of using SH coeffi-
cients for HRTF prediction, we compare the result of
predicting SH coefficients and reconstructed HRTFs,
versus directly predict the HRTF without using the SHT.
When directly predicting the HRTF, we employ the
same model architecture as in Table 1, but we change
the output channel of Conv1D-5 to the number of dis-
cretized spatial locations, instead of the number of SH

bases. The training objective is accordingly changed to
the original HRTF, rather than the SH coefficients.

The comparison result is shown in Table 2. The re-
ported LSDs are compared with the original HRTF, not
the smoothed HRTF by SHT reconstruction.

Table 2: Comparison of global HRTF personalization
w/ and w/o SHT

Method w/ SHT w/o SHT
Global LSD 4.74 6.06

A pairwise statistical t-test across all subjects shows
that the difference between our method and directly
predicting HRTF is statistically significant, at the sig-
nificance level of 0.05. From the experiment result, we
conclude that SHT benefits the global HRTF prediction.

5.4 Limitations and future work

To investigate the predicted performance across fre-
quencies, in Figure 5, we show the SH coefficients
prediction result at a low frequency in (a), and at a high
frequency in (b). In (c), we plot the cumulative global
LSD up to different frequencies.

(a) Comparison of SH coefficients at 1.72k Hz

(b) Comparison of SH coefficients at 17.23k Hz

(c) Global LSD of reconstructed HRTF magnitude across frequencies

Fig. 5: SH coefficients prediction results and global cu-
mulative LSDs up to corresponding frequencies

Comparing (a) and (b) in Figure 5, the prediction re-
sults at low frequency are generally good, while at the
high frequency, the predicted SH coefficients deviate
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from the ground truth, especially for the high-order ba-
sis functions. From sub-figure (c), we can see that the
prediction error accumulates as the frequency increased.
This may due to the fact that information contained in
anthropometric measurements is insufficient for pre-
dicting fine structure patterns in HRTFs, especially at
high frequencies.

In future work, we believe it would be interesting to
investigate alternative representations for subjects’ ear,
head, and torso features. Given that the anthropometric
measurements may not provide enough information
to make accurate predictions, it may be worthwhile
to explore using each subjects’ head mesh to perform
HRTF prediction, as it provides much more information
than current measurements.

6 Summary

In this paper, we proposed a deep learning model for
global HRTF personalization, using a spherical harmon-
ics transform as a compact representation of HRTFs.
A leave-one-out validation with the log-spectral distor-
tion metric was used to evaluate the performance of the
model. Our results showed that the predicted HRTFs
have acceptable error values for all subjects, and were
able to produce HRTFs for all directions at the same
level of error performance, a benefit of the nature of our
feature extraction method. Our predicted HRTFs have
smaller errors than the acoustically simulated HRTFs
provided by the HUTUBS database. We believe that the
work described here is a promising method for future
work on global HRTF personalization.
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