
NORTHWESTERN UNIVERSITY

Computational Music Audio Scene Analysis

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Zhiyao Duan

EVANSTON, ILLINOIS

August 2013

2

c© Copyright by Zhiyao Duan 2013

All Rights Reserved

3

ABSTRACT

Computational Music Audio Scene Analysis

Zhiyao Duan

When playing or listening to a piece of music audio, a musician may constantly but uncon-

sciously analyze its musically meaningful objects such as pitches and notes, and organize

them according to instruments or sources into melody, bass, etc. This capability, although

looks natural to musicians, is extremely difficult for machines. In my dissertation, I call

this capability Music Audio Scene Analysis (MASA). The goal of my research is to design

computational models for MASA. More specifically, I want to answer two questions: 1)

What note is played by each instrument at a given time? 2) How does each note sound?

I focus on polyphonic music audio composed of harmonic sound sources.

Computational models for MASA can help people interact with music. Scholars may

wish to analyze the harmonies in a recording. Musicians may be interested in correcting

occasional wrong notes and beautifying their performances. Listeners may wish to amplify

an instrument in order to help them follow its melodic line.

According to the availability of different modalities of the music, MASA may be ap-

proached in different scenarios. The first scenario is to perform MASA purely from audio.

4

I propose a system to perform multi-pitch analysis on polyphonic audio. This system

first estimates pitches of all the sources in each time frame, then streams the pitch esti-

mates across time into pitch streams. Each pitch stream corresponds to a source. Given

these pitch streams, source signals can be separated with simple masking techniques. The

proposed system is general enough that it can deal with polyphonic audio composed of

harmonic sources other than musical instruments, such as multi-talker speech.

The second scenario is when external information such as musical score, video, lyrics,

meta data is available. I focus on leveraging the musical score information for MASA.

Digital musical scores (e.g. MIDI files) are widely available for many kinds of music, and

are directly machine-understandable. I propose a system that first aligns the audio with

the score, then uses the score-provided pitch information to separate the sources of the

audio mixture. The system performs in an online fashion. Compared to solely analyzing

audio, the score information does significantly improve the MASA performance, to a level

that is promising for further applications.

5

Acknowledgements

First and foremost, I would like to thank my advisor, Prof. Bryan Pardo, for guiding,

teaching, and supporting me during the past five years. Bryan’s advising is comprehen-

sive and reaches every single aspect of my academic growth. From rigorous mathematical

discussions to high-level strategic thinking, to academic writing and presentation, to plan-

ning and time management, to career development and work-life balance, his advice is and

will continue to be a valuable asset for me. I especially appreciate the balance between

freedom and guidance that he gives to me regarding scientific exploration, and the happy

atmosphere that he creates in the lab. Bryan is just a great advisor!

I owe an immerse amount of gratitude to Prof. DeLiang Wang. As a successful

Chinese researcher, he sets an excellent example for me to follow. His rigor, persistence

and tolerance has taught me the qualities that a good researcher must possess. I also

thank him for offering me a two-months visit at his lab in Winter 2013, where I spent

wonderful time and made several good friends.

Special thanks go to my dissertation readers, Prof. Thrasos Pappas and Prof. Michael

Honig for serving on my dissertation committee and giving me valuable feedback since

my dissertation prospectus. I also appreciate their advice on my academic job interview.

That turned out to be very helpful. I thank Prof. Lance Fortnow and Prof. Jorge Nocedal

for serving on the committee of my PhD qualifying exam.

6

I would like to thank Dr. Gautham J. Mysore and Prof. Paris Smaragdis, who were my

mentors during my internship at Adobe Systems in 2011. They are excellent researchers

and collaborators. I enjoyed working, chatting and drinking with them.

I would like to thank my former and present labmates, who made our Interactive Audio

Lab a unique and fantastic place to work at. Special honors go to Jinyu Han, Zafar Rafii,

Mark Cartwright, David Little, Arefin Huq, Jesse Bowman, and Prem Seetharaman, with

whom I have had particularly fruitful discussions.

I would like to thank Dr. Eugene Kushnirsky and Prof. Michael Stein in the Mathe-

matics Department. Taking their pure math courses is one of the most enjoyable activities

I had at Northwestern.

I would like to thank my friends He Zhang, Xiang Huang, Wei Zhou, Ying Chen,

Yang Xu, Jingqi Wang, and Betty Phillips, who made my life at Northwestern enjoying.

Thanks also go to Xiaojia Zhao, Kun Han, Shuang Li, and Yuxuan Wang, who made my

visit to the Ohio State University pleasant, and to Juhan Nam, Nick Bryan, and Brian

King, who were my fellow interns at Adobe.

Finally, I thank my parents and my wife for their endless love and encouragement.

They are wonderful!

7

To my parents Xianjun Duan and Lina Wang, and my wife Yunping Shao.

8

Table of Contents

ABSTRACT 3

Acknowledgements 5

List of Tables 11

List of Figures 13

Chapter 1. Introduction 20

1.1. Motivation 20

1.2. Problem Statement 23

1.3. Related Areas 33

1.4. Summary of Contributions 35

1.5. Broader Impact 37

Part 1. Analyzing the Music Audio Scene without A Written Score 40

Chapter 2. Multi-pitch Estimation 43

2.1. Introduction 43

2.2. Estimating F0s Given the Polyphony 52

2.3. Estimating the Polyphony 65

2.4. Postprocessing Using Neighboring Frames 67

9

2.5. Computational Complexity 69

2.6. Experiments 70

2.7. Conclusions 84

Chapter 3. Multi-pitch Streaming 86

3.1. Introduction 86

3.2. Streaming as Constrained Clustering 90

3.3. Algorithm 95

3.4. Timbre Features 104

3.5. Experiments 111

3.6. Conclusions 120

Chapter 4. Multi-pitch Estimation and Streaming of Multi-talker Speech 122

4.1. Differences between Music and Speech 122

4.2. Multi-pitch Estimation Experiments 124

4.3. Multi-pitch Streaming Experiments 130

4.4. Conclusions 136

Part 2. Analyzing the Music Audio Scene with A Written Score 138

Chapter 5. Audio-score Alignment 141

5.1. Introduction 141

5.2. A Hidden Markov Process for Score Following 145

5.3. Inference by Particle Filtering 150

5.4. Algorithm Analysis 153

5.5. Experiments 154

10

5.6. Conclusions 160

Chapter 6. Score-informed Source Separation 162

6.1. Introduction 162

6.2. Refining Score Pitches 164

6.3. Reconstruct Source Signals 165

6.4. Experiments 167

6.5. Conclusions 175

Chapter 7. Applications 177

7.1. Online Application: Soundprism 177

7.2. Offline Application: Interactive Music Editing 178

Chapter 8. Conclusions 181

8.1. Limitations 182

8.2. Future Work 184

References 187

Appendix A. Pitch and Fundamental Frequency 200

Appendix B. Harmonic, Quasi-harmonic and Inharmonic Sounds 201

11

List of Tables

2.1 Comparison of the proposed method with existing spectral peak

modeling methods. 49

2.2 Parameters Learned From Training Data. The first four probabilities

are learned from the polyphonic training data. The last one is learned

from the monophonic training data. 54

2.3 Correlation coefficients between several variables of normal peaks of

the polyphonic training data. 58

2.4 Mul-F0 estimation performance comparison, when the polyphony is

not provided to the algorithm. 77

3.1 Comparison of the proposed method with existing multi-pitch

streaming methods. 90

4.1 Mean Square Error (MSE) of instantaneous polyphony estimation of

three comparison methods on two-talker mixtures. 129

4.2 Mean Square Error (MSE) of instantaneous polyphony estimation of

the proposed method on three-talker mixtures. 129

5.1 Prior work on audio-score alignment. 142

12

5.2 Comparison of the proposed method with existing online audio-score

alignment method for multi-instrument polyphonic music. 144

5.3 Statistics of 11 audio performances rendered from each monophonic

MIDI in Ganseman’s dataset [49]. 155

5.4 Audio-score alignment results (Average±Std) versus polyphony on

the synthetic dataset. Each value is calculated from 24 musical pieces.158

5.5 Audio-score alignment results versus tempo variation on the synthetic

dataset. 159

5.6 Audio-score alignment results versus polyphony on the Bach chorale

dataset. 159

B.1 Classification of Western musical instruments into harmonic,

quasi-harmonic and inharmonic categories. 203

13

List of Figures

1.1 Illustration of the multi-pitch estimation and streaming process.

Multi-pitch estimation first estimates concurrent pitches at each time

frame of the audio spectrogram. Multi-pitch streaming then streams

pitch estimates across frames according to sources. Pitch streams of

different sources are shown in different colors. 28

1.2 Analogy between MASA with a score and 3D scene understanding

with a tourist map. 31

2.1 Monophonic and polyphonic spectra. Significant peaks are marked by

circles. (a) a note by clarinet (C4); (b) a C major chord, played by

clarinet (C4), oboe (E4) and flute (G4). 44

2.2 Illustration of modeling the frequency deviation of normal peaks.

The probability density (bold curve) is estimated using a Gaussian

Mixture Model with four kernels (thin curves) on the histogram (gray

area). 59

2.3 Illustration of the probability density of p (fk, ak|sk = 1), which is

calculated from the spurious peaks of the polyphonic training data.

The contours of the density is plotted at the bottom of the figure. 61

14

2.4 The probability of detecting the h-th harmonic, given the F0:

P (eh = 1|F0). This is calculated from monophonic training data. 65

2.5 Illustration of polyphony estimation. Log likelihoods given each

polyphony are depicted by circles. The solid horizontal line is the

adaptive threshold. For this sound example, the method correctly

estimates the polyphony, which is 5, marked with an asterisk. 67

2.6 F0 estimation results before and after refinement. In both figures,

lines illustrate the ground-truth F0s, circles are the F0 estimates. 68

2.7 F0 estimation accuracy comparisons of Klapuri06 (gray), Pertusa08

(black) and our method (white). In (b), Klapuri06 is refined with our

refinement method and Pertusa08 is refined with its own method. 76

2.8 Polyphony estimate histogram on the total 33,000 frames of the testing

music pieces. X-axes represent polyphony. Y-axes represent the

proportion of frames (%). The asterisk indicates the true polyphony. 79

2.9 Polyphony estimation histogram of musical chords with polyphony

from 1 to 6. X-axes represent polyphony. Y-axes represent the

proportion of frames (%). The asterisk indicates the true polyphony. 79

2.10 F0 estimation accuracy of different system configurations of our

method, when the true polyphony is provided. The x-axes are system

configuration numbers. 81

2.11 Octave error (gray: lower-octave error, white: higher-octave error)

rates of different system configurations of our method, when the

15

true polyphony is provided. The x-axis is the system configuration

number. 83

3.1 Comparison of the ground-truth pitch streams, K-means clustering

(K = 2) results (i.e. only minimizing the objective function), and

the proposed method’s results (i.e. considering both objective and

constraints). Both the K-means and the proposed method take

the ground-truth pitches as inputs, use 50-d harmonic structure

from Section 3.4 as the timbre feature, and randomly initialize

their clusterings. Each point in these figures is a pitch. Different

instruments are marked with different markers (circles for saxophone

and dots for bassoon). 92

3.2 An illustration of the swap operation. Here we have 9 points from

3 streams (white, gray and black). Must-links are depicted as lines

without arrows, and cannot-links are lines with arrows. Constraints

satisfied by the current partition are in solid lines, and those not

satisfied are in dotted lines. 99

3.3 An illustration of Algorithm 2. Ellipses represent solution spaces

under constraints in different iterations. Points represent clusterings.

Arrows show how clusterings are updated to decrease the objective

function. 102

3.4 Comparison of multi-pitch streaming accuracy of the proposed

approach using three kinds of timbre features: 50-d harmonic

16

structure (dark gray), 21-d MFCC (light gray) and 21-d UDC (white).

Input pitches are ground-truth pitches without track information.

Clusterings are randomly initialized to remove the pitch order

information. 115

3.5 Boxplots of overall multi-pitch streaming accuracies achieved by the

proposed method on the Bach chorale music pieces, taking input pitch

estimates provided by three MPE algorithms: Duan10 (dark gray),

Klapuri06 (light gray) and Pertusa08 (white). Each box of polyphony

2, 3 and 4 represents 60, 40 and 10 data points, respectively. The

lines with circles show the average input MPE accuracy of the three

MPE algorithms. 117

3.6 Box plots of multi-pitch streaming accuracies of the proposed

approach with different system configurations, taking the same input

pitch estimates from Duan10. Each box contains ten data points

corresponding to the ten quartets. The horizontal line is the average

input MPE accuracy. 119

4.1 Comparison of multi-pitch estimation accuracies of Wu03 (dark

gray), Jin11 (light gray) and the proposed method (white) on the

multi-talker speech dataset. Here, DG means each mixture contains

talkers from different genders. SG means each mixture contains

talkers from only a single gender. 128

17

4.2 Comparison of multi-pitch streaming accuracies of the proposed

approach using three kinds of timbre features: 50-d harmonic structure

(dark gray), 21-d MFCC (light gray) and 21-d UDC (white). Input

pitches are ground-truth pitches without track information. 132

4.3 Comparison of multi-pitch streaming accuracies of 1) Wohlmayr11,

2) Hu12, and the proposed approach taking inputs from 3) Duan10,

4) Wu03 and 5) Jin11. Each box has 100 data points. The circled

red lines above the boxes show the average accuracy of input pitch

estimates, prior to streaming. 134

4.4 Box plots of multi-pitch streaming accuracies of the proposed

approach with different system configurations, taking the same input

pitch estimates from Duan10. Each box contains 100 data points

corresponding to the 100 two-talker DG excerpts. The horizontal line

is the average multi-pitch estimation accuracy from the best available

multi-pitch estimator. The accuracy of the input pitch estimation sets

an upper bound of the streaming accuracy. 135

5.1 Illustration of the state space model for online audio-score alignment. 145

6.1 Separation results on pieces of polyphony 2 from the synthetic dataset

for 1) Soundprism, 2) Ideally-aligned, 3) Ganseman10, 4) MPESS and

5) a perfect Oracle. Each box represents 48 data points, each of which

corresponds to an instrumental melodic line in a musical piece from

the synthetic data set. Higher values are better. 170

18

6.2 SDR versus polyphony on the synthetic dataset for 1) Soundprism, 2)

Ideally-aligned, 3) Ganseman10, 4) MPESS and 5) Oracle. Each box

of polyphony n represents 24n data points, each of which corresponds

to one instrumental melodic line in a musical piece. 171

6.3 SDR versus tempo variation on the synthetic dataset for 1)

Soundprism (dark gray), 2) ideally-aligned (light gray) and 3)

Ganseman10 (white). Each box represents 80 data points, each of

which corresponds to one instrumental melodic line in a musical piece.172

6.4 Separation results on pieces of polyphony 2 from the Bach chorale

dataset for 1) Soundprism, 2) Ideally-aligned, 3) Ganseman10, 4)

MPESS and 5) Oracle. Each box represents 120 data points, each of

which corresponds to one instrumental melodic line in a musical piece.173

6.5 SDR versus polyphony on the Bach chorale dataset for 1) Soundprism,

2) Ideally-aligned, 3) Ganseman10, 4) MPESS and 5) Oracle. Each

box of polyphony 2, 3 and 4 represents 2 × 60 = 120, 3 × 40 = 120

and 4 × 10 = 40 data points respectively, each of which corresponds

to one instrumental melodic line in a musical piece. 174

6.6 SDR versus instrumental track indices on pieces of polyphony 4

in the Bach chorale dataset for 1) Soundprism, 2) Ideally-aligned,

3) Ganseman10, 4) MPESS and 5) Oracle. Tracks are ordered by

frequency, i.e., in a quartet Track 1 is soprano and Track 4 is bass. 175

7.1 Illustration of the idea of Soundprism. 177

19

7.2 Interface of the interactive editing application. A user can edit the

audio signal of a musical object (e.g. a note or an instrumental track)

by selecting the object in the score and modifying its parameters such

as loudness, pitch, onset, offset and timbre. 179

B.1 Comparisons of harmonic, quasi-harmonic and inharmonic sounds.

Significant peaks in each magnitude spectrum are marked by circles.

They appear at harmonic positions in harmonic sounds, but not

always in quasi-harmonic sounds. Clarinet and oboe have different

harmonic structures for the same note. 202

20

CHAPTER 1

Introduction

You are listening to a violin concerto. In spite of the complex accompaniment played

by the orchestra, you might be able to follow and memorize the melody of the violin. If

you are also presented with the score of the music and you know how to read a score,

you might be able to follow all the instrument lines. The capability of analyzing the

music audio into musically meaningful objects such as pitches and notes, and organizing

them according to instruments or sources into melody, bass, etc., is called Music Audio

Scene Analysis (MASA) in this dissertation. Although it looks natural to well-trained

musicians, it is extremely difficult for machines. The goal of my dissertation research is

to design computational models for MASA.

1.1. Motivation

There are plenty of motivations to designing computational models for MASA. My

favorite ones are about novel interactions with music. Here I describe two of them.

1.1.1. Automatic Music Accompaniment

Imagine you want to play a string quartet with your musician friends but the cello player

is absent. It would be great if a computer could temporally replace your cello friend

and play with you. This is the automatic music accompaniment problem. Different from

21

conventional accompaniment systems such as Karaoke and Music-Minus-One1 where the

human performer follows the machine, in an automatic music accompaniment scenario

the machine follows the human performance and adjusts itself accordingly.

An automatic music accompaniment system clearly requires MASA techniques. It

needs to analyze the human audio performance into musical objects and map them to the

score. It also needs to render the accompaniment part of the score into audio at the right

time. The rendering could be done using a synthesizer. But to make the accompaniment

more realistic, the system often plays back a pre-recorded human audio performance of the

accompaniment part. In this scenario, the system also needs to analyze the pre-recorded

accompaniment audio and align it to the score, and to the human performance.

Existing automatic music accompaniment systems only follow solo audio performances

[101, 114]. This is because they can only analyze the musical objects in monophonic

music pieces robustly. They treat polyphonic performances as a whole and cannot analyze

them into different sources. Due to the same reason, the pre-recorded accompaniment

audio (usually polyphonic) can only be processed as a whole as well. The system cannot

adaptively change the volume of some instruments, unless the accompaniment audio of

different instruments is pre-recorded separately. Suppose next time your absent friend

is the viola player instead of the cello player. Current systems would require another

pre-recorded accompaniment of the viola, instead of using a single commercial recording

of the whole quartet and adaptively playing the absent instrument(s) each time.

With more advanced MASA techniques that can deal with polyphonic music audio,

one can design a new generation of automatic music accompaniment systems that are more

1http://musicminusone.com/

http://musicminusone.com/

22

intelligent and versatile. These systems would be able to follow both solo or polyphonic

human performances. They would simply store a single professional music recording of

the quartet in the accompaniment system, and automatically mute the sources that are

being performed by human. They could even alter the instrumentation and timbre of the

accompaniment recording, according to human performers’ instrumentation and timbre.

All these novel interactions are more natural and universal than existing interactions such

as Karaoke, Music-Minus-One and current automatic accompaniment systems, because

they cannot analyze musical objects in polyphonic music audio.

1.1.2. Advanced Music Editing

Imagine you recorded your sister’s string quartet performance with a stereo microphone.

Everything was perfect but your sister’s viola part was too soft. You really want to make

her part louder while keeping the volume of the other parts unchanged. What can you

do? Well, with existing music editing techniques, you can adjust the volume, equalization,

reverberation, etc., but only on the audio mixture. You cannot just access the viola signal

and increase its volume without impacting the other parts. To do so, you would need

MASA to separate the mixture into different sources.

There are in fact many scenarios that require advanced music editing techniques. For

example, scholars may wish to analyze the harmonies in a recording. Musicians may

be interested in correcting occasional wrong notes and beautifying their performances.

Audio engineers might want to separate the exciting bass drum from a popular song and

remix it into another song, or make the clarinet sound somewhat like an oboe to achieve

a special effect. All these musically meaningful edits require direct access to the sound

23

sources in the audio mixture, and cannot be fulfilled by current editing techniques unless

the source signals were recorded and stored separately.

Computational models for MASA will enable these novel edits. With MASA tech-

niques, we will be able to access and separate the sound sources from the polyphonic

audio mixture, and further manipulate the source signals. In addition, MASA provides

basic understanding of the musical objects such as notes and chords. Therefore, we can

access and manipulate each note/chord of each source. We can modify their amplitude,

pitch, time and timbre individually, and copy and paste to duplicate them. These novel

editing techniques will greatly advance our interaction with music recordings.

1.2. Problem Statement

1.2.1. Computational Goals of Music Audio Scene Analysis

The problem that I am concerned with in this dissertation is music audio scene analysis

(MASA). More specifically, I define its computational goals as the recognition and segrega-

tion of musically meaningful objects such as notes, chords, melodic lines and sources from

music audio. Taking a wind quintet (played by flute, clarinet, oboe, horn and bassoon)

as an example, the questions that I am interested in are:

(1) What note is played by each instrument at a given time?

(2) How does each note sound?

The first question, at the symbolic level, is about recognizing musical objects and tran-

scribing them into a symbolic representation. The second question, at the physical level,

is about associating physical signals to these musical objects and segregating them from

the audio.

24

MASA is somewhat analogous to scene understanding in computer vision, which aims

to recognize objects and understand their spatial relations from pictures. However, scene

understanding only gives a symbolic representation of the objects and their relations.

A full analogy would require an accurate image segmentation for the objects as well.

MASA is also analogous to speech recognition, which aims to transcribe speech into text.

However, this also only gives a symbolic representation of speech. A full analogy would

be speech recognition and separation in multi-talker speech.

A music audio scene can be as simple as a nursery rhyme, or be as complex as a

symphony. In what scenarios are the computational goals proposed above non-trivial but

still achievable? This is an important question to bear in mind. I try to use human

performance as a frame of reference.

When no information other than the music audio is available, recognizing musical

objects (the first goal) is very similar to the music dictation (transcription) problem,

i.e. writing down the musical score by listening to the music audio. This is one of the

most important aspects of musical training [51], but can be very challenging when there

are several simultaneous voices. There is a story about the talented musician Wolfgang

Mozart that when he was fourteen-year old, he was able to transcribe Gregorio Allegri’s

Miserere (a piece written for nine voices) entirely with minor errors, after listening to

it in the Sistine Chapel only once [1]. This story shows his powerful music memory

and incredible music dictation ability. Although some researchers believe that the story

contains some exaggerations and Mozart might have seen a version of the Miserere score

before [15], we can view this story as providing an upper bound of what human musicians

can achieve in music dictation.

25

On the other hand, music dictation at a certain level is a required ability for all

musicians. This ability can be acquired after years of musical training [51]. Although

the particular training procedure may vary in different institutions, it always starts from

transcribing simple examples such as a single melody, isolated pitch intervals and chords,

and gradually considers more complex materials. The general expectation for college

music majors after four or five semesters’ training in music theory is that “they can

transcribe an excerpt of a quartet (e.g. four measures) with quite complex harmonies, after

listening to it four or five times”, according to David Temperley, an associate professor of

music theory in the Eastman School of Music. These music education practices provide

supports to the proposed computational goals. At least we know there exist some MASA

systems, i.e. human musicians, that can achieve the recognition goal.

When the musical score is provided, human musicians can recognize even more complex

music audio. For example, a piano student can match a polyphonic piano recording with

its score. A conductor can follow dozens of instrument lines of a symphony and spot an

error of a single note.

However, computer systems need not to follow what human musicians do to achieve

the MASA goals. Tasks that are trivial for human musicians might be very challeng-

ing for computers, and vice versa. For example, Hainsworth conducted a study to ask

nineteen musicians to describe how they transcribe music [57]. These musicians had ex-

perience in transcribing music with differen genres for different goals. It is found that

their procedures are quite consistent with each other, all involving several passes of the

music from high level to the details. They first write down a rough sketch of the music

including the structure and pitch contours, then transcribe chords and baselines, followed

26

by the melody, and finally fill in the inner melodies and other details. While the iterative

strategies may be due to the limited music memory of human musicians, for computers

memory is not an issue and these strategies need not be followed. In addition, none of

the musicians mentioned the key subtasks such as beat tracking, style detection and in-

strument identification, because they felt they are trivial tasks. However, these tasks are

extremely challenging for computers. Take instrument identification in polyphonic music

as an example, there are few computer algorithms that attempt to address the problem

and their performance is far from comparable with humans [46].

Besides, the second goal, segregating the signals of musical objects, is even beyond

any human being’s ability. Musicians can perceive a sound object such as a note and

reconstruct it in their heads, but no one can actually reconstruct the physical signal by

hand. Computers, however, can do a fairly good job with very simple algorithms, given

an accurate recognition of the note. One can design more advanced algorithms to obtain

more accurate segregation.

To sum up, the proposal of the computational goals is partially inspired by the capabil-

ity of human musicians. I want to design computer systems that can achieve comparable

MASA performance to average college music majors. However, the design of the algo-

rithms needs not emulate human methods. Engineering innovations should be encouraged

to pursue an alternative way to achieve MASA and to go beyond human musicians.

1.2.2. Dissertation Scope: Music Audio Composed of Harmonic Sound Sources

Due to the large variety of sound sources in music and their rich timbre, the general

MASA problem is clearly too big for a single dissertation. Therefore, I limit the scope

27

of my dissertation to Western music composed of harmonic sound sources. Examples of

harmonic sound sources include wind, string and brass instruments, vocals, etc. They

form the tonal basis of music.

Harmonic sounds are a special kind of periodic sounds whose dominant frequency

components are approximately equally spaced. In other words, the significant spectral

peaks are located at the harmonic positions (i.e. integer multiples) of the fundamental

frequency (F0), which is often aligned with the first significant spectral peak. Pitch, a

subjective concept of periodic sounds, is consistently perceived as the F0 of harmonic

sounds. Therefore, I do not discriminate F0 and pitch, but view them as the same thing.

More details about the formal definitions of harmonic sounds, pitch, and F0 can be found

in the appendices.

Pitch, or F0, is a very important feature for MASA of harmonic sound sources. Dom-

inant frequency components (i.e. harmonics) of a harmonic sound are all located at the

integer multiples of the pitch. If the pitch is known, the organization of the dominant fre-

quency components can be obtained. This is very helpful for estimating the spectrum of a

harmonic sound source if it is mixed with other sources. Once the pitches of the harmonic

source at different time frames are estimated, the evolution of the dominant frequency

components of this source can be inferred. This will make the separation of this source

from the mixture much easier. Therefore, estimating the pitches of each harmonic source

at each individual time frame is an effective way to achieve MASA. In my dissertation, I

adopt this method.

28

1.2.3. MASA Solely from Audio

When the music audio signal is the only input that a MASA system can access, it needs

to analyze the music audio scene purely from the audio. The first part of my dissertation

addresses this scenario. Figure 1.1 shows the general process.

Figure 1.1. Illustration of the multi-pitch estimation and streaming process.
Multi-pitch estimation first estimates concurrent pitches at each time frame
of the audio spectrogram. Multi-pitch streaming then streams pitch esti-
mates across frames according to sources. Pitch streams of different sources
are shown in different colors.

The first step is to estimate the pitches from the audio. For monophonic music (e.g. a

trumpet solo) where there is at most one pitch at a time, pitch estimation (or detection) is

a relatively solved problem. There are a number of methods [24, 7, 117] that can achieve

very good estimation accuracies. For polyphonic music (e.g. a string quartet) where there

can be multiple pitches at a time, however, pitch estimation remains a very challenging

problem. Pitch estimation from polyphonic audio is called multi-pitch estimation (MPE).

It requires estimating both pitches and the number of pitches (polyphony). The difficulties

of MPE mainly arise from the huge number of possible combinations of pitches and their

harmonics, the rich timbre of different sources, and the issue of overlapping harmonics. In

Chapter 2, I propose a novel method for MPE in each single time frame. The basic idea

29

is to view the problem as a maximum likelihood parameter estimation problem, where

the parameters are the pitches and the observation is the magnitude spectrum of the

audio frame. The parameters of the likelihood model are trained from musical chords

with ground-truth pitch labels.

MPE is a first step towards analyzing music audio scenes of harmonic sound sources,

but it is not enough. Although we have estimated the number and frequency values of

simultaneous pitches in each frame, we still have no idea about how the pitches (and their

corresponding harmonics) are organized according to sources. Without this information,

we will not be able to transcribe the notes of the music or separate the sources from the

audio mixture.

Multi-pitch streaming (MPS) is the key to address this issue. The idea is to group all

pitch estimates from a single source into a single stream, corresponding to that source.

For a piece of music audio played by M monophonic harmonic sound sources, we want

to get M pitch streams, each of which corresponds to a harmonic source. The streams

can be discontinuous, due to frequency jumps caused by note transitions and non-pitched

frames caused by silence. In Chapter 3 I propose the first approach to perform MPS

in an unsupervised way, that is, no prior training of the sources in the audio mixture is

required. The basic idea is to cluster the pitches according to their timbre similarity and

time-frequency proximity. Pitches with similar timbre and proximate in both time and

frequency are likely from the same source. Furthermore, it can take the pitch estimates

of any MPE method as input.

30

From the pitch trajectories estimated by MPS, a preliminary separation of the har-

monic sources can be achieved by allocating the energy of the mixture signal at different

frequencies to the sources whose harmonics are at the frequency.

1.2.4. MASA Informed by a Musical Score

While a computer system that takes the music audio as the only input addresses the

MASA problem to some extent, in many cases the achieved results are not satisfying for

further applications. What if besides the music audio, there is external information such

as musical score, video, lyric, or meta data, which is related to the music? Will this

information be helpful to analyze the music audio scene? Can we design computational

models to leverage the external information when it is available?

In the second part of my dissertation, I consider the problem of MASA when a digital

score (e.g. a MIDI file) of the music piece is also available. A digital score provides a sym-

bolic representation (a “skeleton”) of the music, and is directly machine-understandable.

Digital scores for many kinds of music are widely available. They provide useful side

information for computers to achieve better MASA performance. To utilize the score

information, I propose to first align the music audio and the score in Chapter 5. A hidden

Markov process model is proposed to infer the score location of each audio frame. Then

in Chapter 6 I propose to use the pitch information provided by the aligned score to refine

the multi-pitch estimation from the audio, and based on which a simple pitch-based source

separation approach is used to achieve significantly better source separation results.

For humans, leveraging external information does help us analyze the music audio

scene. Take the musical score as an example, it helps a conductor to identify and follow a

31

specific instrument part during an orchestral rehearsal. It also helps a singer in a choir to

“locate” his/her voice among others’ when learning this chorus. Therefore, it is reasonable

to think that external information will also help a computer system to analyze the music

audio scene.

Why would a musical score help analyze the audio scene? Technically speaking, the

score helps reduce the search space for solutions. The score tells us what notes are

supposed to be played and how they should be organized in the audio. For example,

assume a system is trying to transcribe the four notes currently sounding in the audio.

Instead of exploring the full four dimensional pitch space, we can look at a much smaller

subset, i.e. all possible chords written in the score, and find the one that is the best

match. We can also use the ordering of chords in the score to help find the best match,

assuming the audio performance follows the order in the score.

Figure 1.2. Analogy between MASA with a score and 3D scene understand-
ing with a tourist map.

32

MASA with a musical score is analogous to 3D scene understanding with a tourist

map, as shown in Figure 1.2. When a tourist explores a place, the map, which presents

an abstract representation of this place, can be very helpful. The abstract drawings of

tourist spots can help the tourist localize himself by matching the drawings with the real

scene. The spatial relationships between tourist spots can guide the tourist from one

spot to another. However, to make the analogy more accurate, the map must also use

an inconsistent scale for different places, as the performer may slow down or speed up in

ways that are not precisely described in the score.

People may think that MASA becomes trivial when a score is present. However, this

is not the case. The score only tells what musical objects to look for, but not where to

look nor what they sound like. Think about the tourist analogy in Figure 1.2 again. With

a map at hand, we still need to be able to see the real scene, match the real scene with

drawings on the map, and find our way. Similarly, the proposed MASA system needs

to be able to recognize potential musical objects in the audio (multi-pitch estimation),

match them with those written in the score (audio-score alignment), and segregate their

physical signals (score-informed source separation).

The requirement of a score does narrow the scope of the MASA system, since scores

of some music styles may be hard to access and some audio performances (e.g. Jazz)

may be unfaithful to their scores. However, we argue that this is not a big issue. There

is still a large body of music (e.g. classical music) that has musical scores available.

Tens of thousands of them are available in the digital format on the web at sources such

as http://www.classicalmidiconnection.com. In addition, many audio performances

are faithful to their scores. Even for improvised music like Jazz, the score (usually called

http://www.classicalmidiconnection.com

33

a lead sheet) still provides some useful information such as a musical form and chord

progressions for analyzing the music scene. However, the proposed MASA system needs

to use a more robust representation of audio and score [30]. In my dissertation, I will only

address faithful audio performances, where the performers do not intentionally change the

musical objects written in the score.

1.3. Related Areas

1.3.1. Auditory Scene Analysis (ASA)

ASA studies how the human auditory system organizes sound into perceptually mean-

ingful elements from the psychoacoustic perspective [8]. It is believed that there is a

two-stage process. The first stage is called segmentation, where the acoustic input is de-

composed into a collection of time-frequency regions. The second stage is called grouping,

where different time-frequency regions that are mainly from the same source are com-

bined into perceptually meaningful structures such as a note or a word. Grouping can

be operated simultaneously (simultaneous grouping) such as grouping harmonics into a

note, or sequentially (sequential grouping) such as grouping several footsteps into a single

walking sound source.

Researchers have discovered a number of perceptual cues that the human auditory

system uses in the grouping process, including proximity in frequency and time, common

periodicity, common onset and offset, common amplitude and frequency modulation, com-

mon rhythm, common spatial location, similarity in timbre, etc. However, these cues are

usually discovered by presenting listeners with simple laboratory stimuli such as pure

tones. Whether these cues are applicable to organize real-world sounds such as music

34

and speech has not been thoroughly explored in ASA research, as typically practiced

in psychoacoustics labs. The work in this dissertation addresses automated grouping of

real-world music audio by machine.

1.3.2. Computational Auditory Scene Analysis (CASA)

CASA is the study of constructing computer systems (or computational models) that can

achieve human performance in ASA [37, 134]. Researchers usually start from a specific

application (e.g. speech segregation [113, 135], sound localization [81, 139], or music

transcription [72]), and then design computational models for the perceptual cues that

the human auditory system is believed to use in these applications.

ASA and CASA lay out the foundation of the first part of my dissertation. Some of

my proposed methods are inspired by the perceptual cues that ASA has discovered. For

example, multi-pitch estimation (Chapter 2) essentially explores the common periodicity

cue to estimate a fundamental frequency by grouping its harmonics simultaneously. Multi-

pitch streaming (Chapter 3) can be viewed as a sequential grouping problem, where pitch

estimates in different time frames are grouped according to the time-frequency proximity

cue and the timbre similarity cue.

1.3.3. Music Information Retrieval (MIR)

MIR studies how to extract musically meaningful information from various kinds of music

data, including music audio, MIDI files, score sheets, meta data (e.g. artist, album), music

listener social network data, etc. Since the first international conference in 2000, MIR

has been growing fast into a highly interdisciplinary area that integrates traditional fields

35

such as psychoacoustics, musical acoustics, music cognition, signal processing, machine

learning, and information retrieval.

MIR is an application-oriented research area. There are many challenging real-world

problems such as audio classification [121, 75], cover song identification [40, 111], multi-

pitch analysis [70, 33], chord estimation [76], beat tracking [39], audio structural seg-

mentation [78], to name a few. Among these many problems, music audio scene analysis

has always been a main theme, due to the most popularity of the audio format of music.

New problems are also continuously being proposed by the research community in

MIR. Recently one trend is multi-modal music processing [88], i.e. to fuse information

extracted from different types of music data, including music audio, MIDI, score sheet,

meta data, and social network data. It has the potential to achieve better results than

individually processing each individual type. The second part of the dissertation concerns

leveraging musical score information to help analyze the music audio scene. I will show

that this does significantly improve the performance, to a level hopefully practical in the

real world.

1.4. Summary of Contributions

In this section, I summarize the main contributions of my dissertation.

(1) In Chapter 2, a novel multi-pitch estimation (MPE) method is proposed to esti-

mate pitches and polyphony from recorded mixtures of multiple concurrent sound

sources, such as a string quartet. Previous frequency domain MPE methods only

model the relation between pitches and spectral peaks and tend to overfit the

peaks. The proposed method also models the relation between pitches and the

36

non-peak region of the spectrum and avoids the overfitting. The proposed method

significantly reduces the computational complexity compared to existing meth-

ods. It also uses contextual information to refine single-frame pitch estimates

which existing methods do not use. Experiments show the proposed method

outperforms two state-of-the-art MPE methods on both pitch and polyphony

estimation.

(2) In Chapter 3, a novel multi-pitch streaming (MPS) method is proposed to stream

pitch estimates in individual time frames into multiple pitch trajectories, each of

which corresponds to a source. This is the first MPS method that performs in

an unsupervised way, i.e. no pretraining of the source models are required. The

proposed method formulates the problem in a constrained clustering framework.

It combines two perceptual cues in sequential grouping discovered in the auditory

scene analysis (ASA) research (Section 1.3.1): timbre similarity represented by

the clustering objective, and proximity in time and frequency represented by the

constraints.

(3) In chapter 4, the proposed MPE and MPS methods are extended to work with

harmonic sound mixtures other than polyphonic music. More specifically, a novel

cepstral feature is proposed to characterize the timbre of a talker. This feature

can be calculated directly from the multi-talker speech mixture signal, without

the need of separation of the talker’s signal. This feature may be helpful in many

speech research problems such as speech/speaker recognition in multi-talker or

noisy environments.

37

(4) In Chapter 5, a novel method is proposed to align a polyphonic music audio

with its score. This is the first method that performs online alignment (i.e.

score following) of polyphonic music audio with multiple instruments on a single

microphone, with no prior training on the specific piece of music.

(5) In Chapter 7, a novel interactive music editing software is proposed, using the

proposed score-informed source separation technique. A user can segregate the

signal of a note or all notes of a source in a piece of music, by clicking on the cor-

responding note or source in its MIDI score. Then the user can edit the volume,

pitch, timbre and timing of the note or all notes of the source. In this chapter,

a real-time polyphonic music source separation application called “Soundprism”

is also envisioned. Provided a MIDI score, Soundprism can separate a piece of

polyphonic music audio into source signals in real time.

(6) All the code of the proposed MPE, MPS, Audio-score alignment and score-

informed source separation algorithms can be freely downloaded at http://www.

cs.northwestern.edu/~zdu459/resource/Resources.html.

1.5. Broader Impact

Besides the benefits described in Section 1.1 and 1.4, my dissertation may have impact

on broader areas.

(1) Computational models for MASA can help people better organize music. In the

information era, finding ways to automatically index, label and search the in-

creasing amount of music documents is becoming one of the key problems. These

operations, to be perceptually meaningful, heavily rely on computational models

http://www.cs.northwestern.edu/~zdu459/resource/Resources.html
http://www.cs.northwestern.edu/~zdu459/resource/Resources.html

38

for MASA. For example, automatically searching for music recordings with simi-

lar melodies requires extracting melodies from music recordings containing many

simultaneous sounds (guitar, bass and drums).

(2) Working with speech data, the proposed MPE and MPS methods may help

prosody analysis and speech recognition of tonal languages such as Chinese. The

proposed novel cepstral feature in Chapter 4 characterizes the timbre of a talker.

Since it can be directly calculated from the mixture signal, it may open an avenue

for speaker recognition/identification in multi-talker or noisy environments.

(3) Besides polyphonic music (Chapter 2 and 3) and multi-talker speech (Chapter

4), the proposed MPE and MPS methods can deal with other harmonic sound

mixtures such as bird songs. This could be beneficial for biological environment

surveillance. In fact, I am collaborating with Jonathan Springer and Bryan Pardo

on a project of concurrent bird species recognition from bird songs [116]. The idea

is to perform MPE and MPS to estimate the pitch trajectory of each concurrent

bird song, based on which to recognize the bird species.

(4) The proposed interactive music editing application in Chapter 7 can be helpful

for music education. Imagine a student who studies music composition. One

effective way is to analyze classical music masterpieces and try to ask oneself why

it is better to compose this way. With the proposed interactive music editor, the

student can modify the pitch, dynamics, timing, instrumentation and timbre of a

single note or an instrumental part of the masterpieces, and play back the audio

after the modification. By comparing the modified versions with the original

version, he/she can have a direct feel of which is better.

39

(5) The envisioned real-time score-informed music source separation application Sound-

prism could enable novel interactions in music entertainment. For example,

Soundprism can be implemented in a mobile device. An audience member in

a concert equipped with this device (and a headset) could switch between en-

joying the full-band performance and focusing on the solo performance of the

violin, or the violin-cello duet, according his/her personal preference. He/she

can also view the aligned score through the device at the same time. This adds

to the traditional passive listening activity a number of active selection and at-

tention opportunities. Similarly, this device can be used in radio, TV or any

music streaming scenarios.

40

Part 1

Analyzing the Music Audio Scene without

A Written Score

For polyphonic music audio composed of harmonic sound sources, analyzing the music

audio scene solely from audio requires multi-pitch analysis. Multi-pitch analysis is the

problem of estimating the pitch content of each harmonic source in each time frame

from the audio mixture. With the pitch content estimated, the significant frequency

components (harmonics) of the harmonic source are organized, and the source signal can

be separated from the mixture. Many musical objects such as notes, chords, melody lines,

etc. can be extracted as well.

Multi-pitch analysis is a fundamental problem in audio signal processing. In music

information retrieval, it is of great interest to researchers working in automatic music

transcription [72], source separation [35], melody extraction [58], etc. In speech process-

ing, it is helpful for multi-talker speech recognition [19] and prosody analysis [63]. It is

also a step towards solving the cocktail party problem [14].

According to MIREX2, multi-pitch analysis can be addressed at three levels. The first

(and easiest) level is to collectively estimate pitch values of all concurrent sources at each

individual time frame, without determining their sources. This is also known as multi-

pitch estimation (MPE). Most work in multi-pitch analysis performs at this level and a

number of methods have been proposed. For music, time domain methods [120, 23, 22]

and frequency domain methods [83, 53, 141, 93, 70, 41, 109, 33] have been proposed.

For speech, several methods [140, 112, 3, 64] estimate pitches of two concurrent speakers,

but no existing work addresses three or more concurrent speakers.

2The Music Information Retrieval Evaluation eXchange (MIREX) is an annual evaluation campaign for
Music Information Retrieval (MIR) algorithms. Multiple Fundamental Frequency Estimation & Tracking
is one of its tasks.

42

The second level is called note tracking in music information retrieval. The task is to

estimate continuous segments that typically correspond to individual notes or syllables.

This is often achieved by assuming the continuity and smoothness of the pitch contours

in the model, connecting pitch estimates that are close in both time and frequency. Note

that each pitch contour comes from one source but each source can have many contours

(e.g. one contour per musical note or spoken word). Several methods have been proposed

to perform at this level, for music [108, 95, 66, 13] or speech [74].

The third (and most difficult) level is to stream pitch estimates into a single pitch

trajectory over an entire conversation or music performance for each of the concurrent

sources. The trajectory is much longer than those estimated at the second level, and

contains a number of discontinuities that are caused by silence, non-pitched sounds and

abrupt frequency changes. Therefore, techniques used at the second level to connect close

pitch estimates are not enough to connect short pitch segments into streams. We argue

timbre information is needed to connect discontinuous pitch segments of a single sound

source. I call the third level multi-pitch streaming3.

In the first part of my dissertation, I address MASA through multi-pitch analysis. In

Chapter 2, I introduce my work on MPE, i.e. the first level of multi-pitch analysis. In

Chapter 3, I introduce my work on MPS, i.e. the third level of multi-pitch analysis. My

work on multi-pitch analysis can be applied to not only music, but also speech. I describe

some results I obtained on speech data in Chapter 4.

3This is also sometimes called multi-pitch tracking, however multi-pitch tracking also refers to the first or
second level in the literature. Therefore, I use streaming to refer the third level.

43

CHAPTER 2

Multi-pitch Estimation

2.1. Introduction

Multi-pitch Estimation (MPE), or Multiple F0 Estimation (MF0E), is the task of esti-

mating the pitches (fundamental frequencies, F0s) and the number of pitches (polyphony)

in each time frame of polyphonic audio composed of harmonic sound sources. It is of great

interest to researchers working in music audio and is useful for many applications, includ-

ing automatic music transcription [95], source separation [137] and score following [90].

The task, however, remains challenging and existing methods do not match human ability

in either accuracy or flexibility.

2.1.1. Why Is MPE So Difficult?

According to the number of concurrent sounds, music audio can be classified into mono-

phonic and polyphonic. Monophonic music has at most one sound at a time, e.g. a

clarinet or vocal solo. In monophonic music, there is at most one pitch at a time. There-

fore, pitch estimation for monophonic music is called single pitch detection. Polyphonic

music, however, can have more than one sounds at a time. A duet, a quintet and a sym-

phony are all polyphonic. Some instruments such as piano and guitar are also polyphonic

in nature.

44

0 1000 2000 3000 4000 5000

−20

0

20

40

60
261.0Hz

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

(a)

0 1000 2000 3000 4000 5000

−20

0

20

40

60

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

(b)

Figure 2.1. Monophonic and polyphonic spectra. Significant peaks are
marked by circles. (a) a note by clarinet (C4); (b) a C major chord, played
by clarinet (C4), oboe (E4) and flute (G4).

Single pitch detection is relatively easy and has been well solved [24]. As shown

in Figure 2.1-(a), significant peaks in a monophonic spectrum form a clear harmonic

structure. Its F0 can be easily inferred from this structure, and harmonics are well

represented by spectral peaks. In Figure 2.1-(b), however, when the clarinet note is

mixed with two other notes to compose a triad chord, the positions of spectral peaks

become irregular. It is hard to find the original harmonic structure in Figure 2.1-(a) from

a subset of peaks here. This is because of the notorious “overlapping harmonic” issue.

Harmonics of concurrent sounds often overlap with each other, resulting in significant

changes in amplitude, shape and even frequency of spectral peaks. Harmonics with small

amplitude can even be masked by other harmonics or their sidelobes, and hence are not

represented by peaks. Compared with general sound mixtures, this issue is especially

severe in polyphonic music. This is because one of the guidelines in composing music is

to make concurrent sounds consonant, which leads to small integer ratios between their

F0s and therefore many overlaps between their harmonics. Take a C major chord as an

45

example, one can calculate that 46.7% of the harmonics of the note C4 overlap with the

other two notes. E4 has 33.3% overlap and G4 has 60%.

The overlapping harmonic issue makes the correspondence between spectral peaks and

harmonics noisy. This, however, is not the only problem. It can be seen that the spectrum

in Figure 2.1-(b) has in total 28 significant peaks below 5000Hz. If we are not told that it

is a triad chord, how many sources shall we infer from the spectrum? Let us assume each

peak is caused by only a single source and not a combination of sources. Should there be

28 concurrent sources, each of which corresponds to one peak? Suppose we know there

are three sources, how should the peaks be associated with the sources? If the peaks are

independent to each other, there will be 328 ≈ 23 trillion possible associations. Clearly

we still need to use the knowledge about harmonic sources to organize these peaks and

infer corresponding harmonics. However, this is still very challenging.

Besides the overlapping harmonic issue, there are two additional difficulties of MPE.

First, the search space for solutions is large. Suppose there are four concurrent pitches in

a frame, and each one can arbitrarily take a value from the pitch range of the piano (88

musical semitones). Suppose we want to estimate the F0 of each pitch at the precision of

ten musical cents (i.e. 0.1 semitone). Then there would be 880 possible values for each

pitch and 8804 ≈ 6 × 1011 possible solutions for a single frame of audio with 4 pitched

sound sources. Clearly, a brute force search would be very time-consuming. Second,

polyphony, i.e. the number of concurrent pitches, usually needs to be estimated. Even in

the case that the number of instruments are known in a piece of music, we are only given

the maximum polyphony at different time frames, as some instruments may be inactive.

46

2.1.2. Related Work

All those who develop MPE systems must make certain design choices. The first of these

is how to preprocess the audio data and represent it. Some researchers do not employ any

preprocessing of the signal and represent it with the full time domain signal or frequency

spectrum. In this category, discriminative model-based [95], generative model-based [22,

126], graphical model-based [67], spectrum modeling-based [53, 66, 109, 36, 41] and

genetic algorithm-based [104] methods have been proposed.

Because of the high dimensionality of the original signal, researchers often preprocess

the audio with some method to retain salient information, while abstracting away irrele-

vant details. One popular data reduction technique has been to use an auditory model to

preprocess the audio. Meddis and Mard [85] proposed a unitary model of pitch percep-

tion for single F0 estimation. Tolonen and Karjalainen [120] simplified this model and

applied it to multiple F0 estimation of musical sounds. de Cheveigné and Kawahara [23]

integrated the auditory model and used a temporal cancelation method for F0 estimation.

Klapuri [69, 70] used auditory filterbanks as a front end, and estimated F0s in an itera-

tive spectral subtraction fashion. It was reported that [70] achieves the best performance

among methods in this category.

Another more compact data reduction technique is to reduce the full signal (com-

plex spectrum) to observed power spectral peaks [52, 83, 119, 77, 34, 93, 141]. The

rationale is that peaks are very important in terms of human perception. For exam-

ple, re-synthesizing a harmonic sound using only peaks causes relatively little perceived

distortion [115]. In addition, peaks contain important information for pitch estimation

47

because, for harmonic sounds, they typically appear near integer multiples of the funda-

mental frequency. Finally, this representation makes it easy to mathematically model the

signal and F0 estimation process. Given these observations, we believe this representation

can be used to achieve good results.

For MPE methods in this category, a key question is how to infer F0s from peaks, or

more specifically, how to model the relationship between peaks and harmonics of a F0

hypothesis. One way is to define a deterministic process to match peaks and harmonics,

and define some function to measure how well they match. This can then be used as the

salience of an F0 hypothesis [83, 141, 93]. In defining the salience function, the harmonic

energy cue (i.e. that a correct F0 must have strong harmonics), the harmonic smoothness

cue (i.e. that harmonics of the same F0 form a smooth spectral envelope) and the harmonic

synchronization cue (i.e. that harmonics of the same F0 have similar temporal evolution)

are often employed. These deterministic methods, however, suffer from several problems.

First, it is very difficult to define a general matching process between peaks and harmonics

in the polyphonic scenario. A deterministic one-to-one correspondence between peaks and

harmonics is inherently nonrealistic because of the overlapping harmonic issue. Second,

the defined salience functions usually combine different cues in a manually tuned way with

a number of weighting parameters lacking a systematic framework, potentially impacting

their generalizability.

Another way to model the relation between peaks and harmonics is through prob-

abilistic models [52, 119, 77]. These methods view spectral peaks as being generated

from F0s and their harmonics in a probabilistic manner, and they adopt the maximum

likelihood framework to estimate concurrent pitches (parameters) from the spectral peaks

48

(observations). Although they are flexibility in modeling the noisy relation between peaks

and harmonics, they have the following problems. First, their computational complexity

is very high since they consider every possible peak-harmonic association in defining the

likelihood, which is exponential to the number of peaks and harmonics. Second, they tend

to overfit spectral peaks which leads to various pitch estimation errors. This is because

they only view spectral peaks as observations and favor F0 hypotheses whose harmonics

could generate the spectral peaks. However, an F0 estimate which is one octave lower

than the true F0 could still generate the peaks well, using only even harmonics, although

many of its odd harmonics may not find peaks to generate. Third, these methods (and

the deterministic methods) all assume that the polyphony of the signal is known. This

can be problematic if the polyphony is unknown or changes with time.

2.1.3. Advances of the Proposed Method

In this chapter, I address the multiple F0 estimation problem in a maximum likelihood

fashion, similar to [52, 119, 77] and adopting the idea in [83, 41]. I model the observed

power spectrum as a set of peaks and the non-peak region. I define the peak region as

the set of all frequencies within d of an observed peak. The non-peak region is defined

as the complement of the peak region (see Section 2.2 for detailed definitions). I then

define a likelihood on both the peak region and the non-peak region, and the total like-

lihood function as their product. The peak region likelihood helps find F0s that have

harmonics that explain peaks, while the non-peak region likelihood helps avoid F0s that

have harmonics in the non-peak region. They act as a complementary pair. I adopt an

iterative way to estimate F0s one by one to avoid the combinatorial problem of concurrent

49

F0 estimation. I also propose a polyphony estimation method to terminate the iterative

process. Finally, I propose a postprocessing method to refine the polyphony and F0 es-

timates using neighboring frames. The refinement method eliminates many inconsistent

estimation errors.

Table 2.1. Comparison of the proposed method with existing spectral peak
modeling methods.

Deterministic Probabilistic
[83] [141] [93] [52] [119] [77] Proposed

Designed for multi-pitch estimation X X X X
Models peak amplitude X X X X X X

Avoids overfitting peaks X X X X
Learns parameters from data X X X

Computationally economic X X X X
Polyphony estimation X X

Utilizes contextual information X X
Tested on a large polyphonic dataset X X X

I have published the proposed method in [33]. Table 2.1 compares it with exist-

ing methods in the spectral peak modeling category. Among theses advances, the most

important ones are:

• It avoids the peak overfitting problem in [52, 119, 77]. The peak-region like-

lihood tends to overfit peaks, but the non-peak region likelihood penalizes this

overfitting. The two parts act complementarily and are organized in a unified

probabilistic framework.

• It significantly reduces the computational complexity compared to [119, 77].

The proposed likelihood model assumes conditional independence between peaks

given F0s, which avoids enumerating all possible associations between peaks and

harmonics. Also, the proposed algorithm adopts a greedy search strategy in

50

estimating concurrent pitches. These operations reduce the complexity from

exponential to linear in the number of peaks and pitches.

• It proposes a simple polyphony estimation method that shows superior perfor-

mance compared to a state-of-the-art method [70]. Existing multi-pitch esti-

mation methods in the spectral modeling category [141, 77] often require the

polyphony of the audio as an input.

• It refines F0 estimates in each frame using neighboring frames, while most related

methods [141, 77] do not use context information.

2.1.4. System Overview

Algorithm 1 shows the overview of the proposed approach. I assume an audio file has been

normalized to a fixed Root Mean Square (RMS) energy and segmented into a series of

(possibly overlapping) time windows called frames. For each frame, a Short Time Fourier

Transform (STFT) is performed with a hamming window and four times zero-padding to

get a power spectrum.

Spectral peaks are then detected by the peak detector described in [35]. Basically,

there are two criteria that determine whether a power spectrum local maximum is labeled

a peak. The first criterion is global: the local maximum should not be less than some

threshold (e.g. 50dB) lower than the global maximum of the spectrum. The second

criterion is local: the local maximum should be locally higher than a smoothed version

of the spectrum by at least some threshold (e.g. 4dB). Finally, the peak amplitudes and

frequencies are refined by quadratic interpolation [115].

51

Algorithm 1: Proposed Multi-pitch Estimation Algorithm.

Input : A piece of polyphonic audio composed of harmonic sound sources,
segmented into overlapping time frames.

Output: A set of pitches in each audio frame.
1 for each frame of audio do
2 Find peak frequencies and amplitudes with [35];
3 C = a finite set of frequencies within d of peak frequencies;
4 θ = ∅;
5 for N = 1 : MaxPolyphony do
6 for each F0 in C do
7 Evaluate Eq. (2.2) on θ

⋃
{F0} (Section 2.2);

8 end
9 Add to θ the F0 that maximized Eq. (2.2);

10 end
11 Estimate actual polyphony N with Eq. (2.18) (Section 2.3);

12 Return the first N estimates in θ = {F 1
0 , · · · , FN

0 };
13 end
14 for each frame of the audio do
15 Refine F0 estimates using neighboring frames (Section 2.4);
16 end

Given this set of peaks, a set C of candidate F0s is generated. To facilitate compu-

tation, I do not consider the “missing fundamental” situation in this paper. Candidate

F0 values are restricted to a range of ± 6% in Hz (one semitone) of the frequency of an

observed peak. I consider increments with a step size of 1% in Hz of the peak frequency.

Thus, for each observed peak there are 13 candidate F0 values. In implementation, one

can further reduce the search space by assuming F0s only occur around the 5 lowest fre-

quency peaks, 5 highest amplitude peaks and 5 locally highest amplitude peaks (peak

amplitudes minus the smoothed spectral envelope). This gives at most 15 · 13 = 195

candidate F0s for each frame.

52

A naive approach to finding the best set of F0s would have to consider the power set of

these candidates: 2195 sets. To deal with this issue, I use a greedy search strategy, which

estimates F0s one by one. This greatly reduces the time complexity (for a complexity

analysis see Section 2.5).

At each iteration, a newly estimated F0 is added to the existing F0 estimates until the

maximum allowed polyphony is reached. Then, a post processor (Section 2.3) determines

the best polyphony using a threshold base on the likelihood improvement as each F0

estimate is added. Finally, each frame’s F0 estimates are refined using information from

estimates in neighboring frames (see Section 2.4).

2.2. Estimating F0s Given the Polyphony

This section describes how I approach Line 6 and 7 in Algorithm 1. Given a time

frame presumed to contain N monophonic harmonic sound sources, I view the problem

of estimating the fundamental frequency (F0) of each source as a Maximum Likelihood

parameter estimation problem in the frequency domain,

(2.1) θ̂ = arg max
θ∈Θ
L (θ) = arg max

θ∈Θ
p (O|θ) ,

where θ = {F 1
0 , · · · , FN

0 } is a set of N fundamental frequencies to be estimated, Θ is the

space of possible sets θ, and O represents our observation from the power spectrum.

I assume that the spectrum is analyzed by a peak detector, which returns a set of

peaks. The observation to be explained is the set of peaks and the non-peak region of

the spectrum.

53

I define the peak region as the set of all frequencies within d of an observed peak. The

non-peak region is defined as the complement of the peak region. I currently define d as a

musical quarter tone, which will be explained in Section 2.2.2. Then, similar to [119, 77],

peaks are further categorized into normal peaks and spurious peaks. From the generative

model point of view, a normal peak is defined as a peak that is generated by a harmonic

of an F0. Other peaks are defined as spurious peaks, which may be generated by peak

detection errors, noise, sidelobes, etc.

The peak region likelihood is defined as the probability of occurrence of the peaks,

given an assumed set of F0s. The non-peak region likelihood is defined as the probability

of not observing peaks in the non-peak region, given an assumed set of F0s. The peak

region likelihood and the non-peak region likelihood act as a complementary pair. The

former helps find F0s that have harmonics that explain peaks, while the latter helps avoid

F0s that have harmonics in the non-peak region.

We wish to find the set θ of F0s that maximizes the probability of having harmonics

that could explain the observed peaks, and minimizes the probability of having harmonics

where no peaks were observed. To simplify calculation, I assume independence between

peaks and the non-peak region. Correspondingly, the likelihood is defined as the multi-

plication of two parts: the peak region likelihood and the non-peak region likelihood:

(2.2) L(θ) = Lpeak region(θ) · Lnon-peak region(θ).

The parameters of the models are learned from training data, which are summarized

in Table 2.2 and will be described in detail in the following.

54

Table 2.2. Parameters Learned From Training Data. The first four prob-
abilities are learned from the polyphonic training data. The last one is
learned from the monophonic training data.

P (sk) Prob. a peak k is normal or spurious
p (fk, ak|sk = 1) Prob. a spurious peak has frequency fk and

amplitude ak
p (ak|fk, hk) Prob. a normal peak has amplitude ak, given its

frequency fk and it is harmonic hk of an F0
p (dk) Prob. a normal peak deviates from its

corresponding ideal harmonic frequency by dk
P (eh|F0) Prob. the h-th harmonic of F0 is detected

2.2.1. Peak Region Likelihood

Each detected peak k in the power spectrum is represented by its frequency fk and

amplitude ak. Given K peaks in the spectrum, I define the peak region likelihood as

Lpeak region(θ) = p (f1, a1, · · · , fK , aK |θ)(2.3)

≈
K∏
k=1

p (fk, ak|θ) .(2.4)

Note that fk, ak and all other frequencies and amplitudes in this paper are measured on

a logarithmic scale (musical semitones and dB, respectively)1. This is done for ease of

manipulation and accordance with human perception. Because frequency is calculated in

the semitone scale, the distance between any two frequencies related by an octave is always

12 units. I adopt the general MIDI convention of assigning the value 60 to Middle C (C4,

262Hz) and use a reference frequency of A=440Hz. The MIDI number for A=440Hz is

69, since it is 9 semitones above Middle C.

1FREQUENCY: MIDI number = 69+12× log2(Hz/440); AMPLITUDE: dB = 20× log10(Linear ampli-
tude).

55

From Eq. (2.3) to Eq. (2.4), I assume2 conditional independence between observed

peaks, given a set of F0s. Given a harmonic sound, observed peaks ideally represent

harmonics and are at integer multiples of F0s. In practice, some peaks are caused by

inherent limitations of the peak detection method, non-harmonic resonances, interference

between overlapping sound sources and noise. Following the practice of [119], I call peaks

caused by harmonics normal peaks, and the others spurious peaks. We need different

models for normal and spurious peaks.

For monophonic signals, there are several methods to discriminate normal and spurious

peaks according to their shapes [106, 105]. For polyphonic signals, however, peaks from

one source may overlap peaks from another. The resulting composite peaks cannot be

reliably categorized using these methods. Therefore, I introduce a binary random variable

sk for each peak to represent that it is normal (sk = 0) or spurious (sk = 1), and consider

both cases in a probabilistic way:

(2.5) p (fk, ak|θ) =
∑
sk

p (fk, ak|sk,θ)P (sk|θ)

P (sk|θ) in Eq. (2.5) represents the prior probability of a detected peak being normal

or spurious, given a set of F0s3. I would like to learn it from training data. However,

the size of the space for θ prohibits creating a data set with sufficient coverage. Instead,

I neglect the effects of F0s on this probability and learn P (sk) to approximate P (sk|θ).

This approximation is not only necessary, but also reasonable. Although P (sk|θ) is

2In this chapter, we use ≈ to denote “assumption”.
3Here P (·) denotes probability mass function of discrete variables; p(·) denotes probability density of
continuous variables.

56

influenced by factors related to F0s, it is much more influenced by the limitations of the

peak detector, nonharmonic resonances and noise, all of which are independent of F0s.

I estimate P (sk) from randomly mixed chords, which are created using recordings of

individual notes performed by a variety of instruments (See Section 2.6.1 for details). For

each frame of a chord, spectral peaks are detected using the peak detector described in

[35]. Ground-truth values for F0s are obtained by running YIN [24], a robust single F0

detection algorithm, on the recording of each individual note, prior to combining them to

form the chord.

We need to classify normal and spurious peaks and collect their corresponding statistics

in the training data. In the training data, we have the ground-truth F0s, hence the

classification becomes possible. I calculate the frequency deviation of each peak from the

nearest harmonic position of the reported ground-truth F0s. If the deviation d is less than

a musical quarter tone (half a semitone), the peak is labeled normal, otherwise spurious.

The justification for this value is: YIN is a robust F0 estimator. Hence, its reported

ground-truth F0 is within a quarter tone range of the unknown true F0, and its reported

harmonic positions are within a quarter tone range of the true harmonic positions. As

a normal peak appears at a harmonic position of the unknown true F0, the frequency

deviation of the normal peak defined above will be smaller than a quarter tone. In our

training data, the proportion of normal peaks is 99.3% and is used as P (sk = 0).

In Eq. (2.5), there are two probabilities to be modeled, i.e. the conditional probability

of the normal peaks p (fk, ak|sk = 0,θ) and the spurious peaks p (fk, ak|sk = 1,θ). I now

address them in turn.

57

2.2.1.1. Normal Peaks. A normal peak may be a harmonic of only one F0, or sev-

eral F0s when they all have a harmonic at the peak position. In the former case,

p (fk, ak|sk = 0,θ) needs to only consider one F0. However, in the second case, this

probability is conditioned on multiple F0s. This leads to a combinatorial problem we

wish to avoid.

To do this, we adopt the assumption of binary masking [143, 97] used in some source

separation methods. They assume the energy in each frequency bin of the mixture spec-

trum is caused by only one source signal. Here I use a similar assumption that each peak

is generated by only one F0, the one having the largest likelihood to generate the peak.

(2.6) p (fk, ak|sk = 0,θ) ≈ max
F0∈θ

p (fk, ak|F0) .

Now let us consider how to model p (fk, ak|F0). Since the k-th peak is supposed to

represent some harmonic of F0, it is reasonable to calculate the harmonic number hk as

the nearest harmonic position of F0 from fk.

Given this, I find the harmonic number of the nearest harmonic of an F0 to an observed

peak as follows:

(2.7) hk = [2
fk−F0

12],

where [·] denotes rounding to the nearest integer. Now the frequency deviation dk of the

k-th peak from the nearest harmonic position of the given F0 can be calculated as:

(2.8) dk = fk − F0 − 12 log2 hk.

58

Table 2.3. Correlation coefficients between several variables of normal peaks
of the polyphonic training data.

a f F0 h d
a 1.00 -0.78 -0.11 -0.60 -0.01
f – 1.00 0.40 0.56 0.01
F0 – – 1.00 -0.41 -0.01
h – – – 1.00 0.02
d – – – – 1.00

To gain a feel for how reasonable various independence assumptions between our

variables might be, I collected statistics on the randomly mixed chord data described in

Section 2.6.1. Normal peaks and their corresponding F0s are detected as described before.

Their harmonic numbers and frequency deviations from corresponding ideal harmonics

are also calculated. Then the correlation coefficient is calculated for each pair of these

variables. Table 2.3 illustrates the correlation coefficients between fk, ak, hk, dk and F0

on this data.

We can factorize p (fk, ak|F0) as:

(2.9) p (fk, ak|F0) = p (fk|F0) p (ak|fk, F0) .

To model p (fk|F0), we note from Eq. (2.8) that the relationship between the frequency

of a peak fk and its deviation from a harmonic dk is linear, given a fixed harmonic number

hk. Therefore, in each segment of fk where hk remains constant, we have

p (fk|F0) = p (dk|F0)(2.10)

≈ p (dk) ,(2.11)

59

where in Eq. (2.11), p (dk|F0) is approximated by p(dk). This approximation is supported

by the statistics in Table 2.3, as the correlation coefficients between d and F0 is very small,

i.e. they are statistically independent.

Since I characterize p (dk) in relation to a harmonic, and I measure frequency in a log

scale, I build a standard normalized histogram for dk in relation to the nearest harmonic

and use the same distribution, regardless of the harmonic number. In this work, I estimate

the distribution from the randomly mixed chords data set described in Section 2.6.1. The

resulting distribution is plotted in Figure 2.2.

−0.2 −0.1 0 0.1 0.2
0

10

20

30

Frequency deviation (MIDI number)

P
ro

ba
bi

lit
y

de
ns

ity

Figure 2.2. Illustration of modeling the frequency deviation of normal
peaks. The probability density (bold curve) is estimated using a Gauss-
ian Mixture Model with four kernels (thin curves) on the histogram (gray
area).

It can be seen that this distribution is symmetric about zero, a little long tailed, but

not very spiky. Previous methods [52, 119, 77] model this distribution with a single

Gaussian. I found a Gaussian Mixture Model (GMM) with four kernels to be a better

approximation. The probability density of the kernels and the mixture is also plotted in

Figure 2.2.

60

To model p (ak|fk, F0), we observe from Table 2.3 that ak is much more correlated

with hk than F0 on our data set. Also, knowing two of fk, hk and F0 lets one derive the

third value (as in Eq. 2.8). Therefore, we can replace F0 with hk in the condition.

(2.12) p (ak|fk, F0) = p (ak|fk, hk) =
p (ak, fk, hk)

p (fk, hk)
.

I then estimate p (ak, fk, hk) using the Parzen window method [92], because it is hard

to characterize this probability distribution with a parametric representation. An 11

(dB) × 11 (semitone) × 5 Gaussian window with variance 4 in each dimension is used to

smooth the estimate. The size of the window is not optimized but just chosen to make

the probability density look smooth.

I now turn to modeling those peaks that were not associated with a harmonic of any

F0.

2.2.1.2. Spurious Peaks. By definition, a spurious peak is detected by the peak detec-

tor, but is not a harmonic of any F0 in θ, the set of F0s. The likelihood of a spurious

peak from Eq. (2.4) can be written as:

(2.13) p (fk, ak|sk = 1,θ) = p (fk, ak|sk = 1) .

The statistics of spurious peaks in the training data are used to model Eq. (2.13).

The shape of this probability density is plotted in Figure 2.3, where a 11 (semitone) ×

9 (dB) Gaussian window is used to smooth it. Again, the size of the window is not

optimized but just chosen to make the probability density look smooth. It is a multi-

modal distribution, however, since the prior probability of spurious peaks is rather small

(0.007 for our training data), there is no need to model this density very precisely. Here

61

a 2-D Gaussian distribution is used, whose means and covariance are calculated to be

(82.1, 23.0) and

 481.6 −89.5

−89.5 86.8

.

Figure 2.3. Illustration of the probability density of p (fk, ak|sk = 1), which
is calculated from the spurious peaks of the polyphonic training data. The
contours of the density is plotted at the bottom of the figure.

I have now shown how to estimate probability distributions for all the random variables

used to calculate the likelihood of an observed peak region, given a set of F0s, using Eq.

(2.3). I now turn to the non-peak region likelihood.

2.2.2. Non-peak Region Likelihood

As stated in the start of Section 2.2, the non-peak region also contains useful information

for F0 estimation. However, how is it related to F0s or their predicted harmonics? Instead

of telling us where F0s or their predicted harmonics should be, the non-peak region tells

us where they should not be. A good set of F0s would predict as few harmonics as possible

in the non-peak region. This is because if there is a predicted harmonic in the non-peak

62

region, then clearly it was not detected. From the generative model point of view, there

is a probability for each harmonic being or not being detected. Therefore, I define the

non-peak region likelihood in terms of the probability of not detecting any harmonic in

the non-peak region, given an assumed set of F0s.

I assume that the probability of detecting a harmonic in the non-peak region is inde-

pendent of whether or not other harmonics are detected. Therefore, the probability can

be written as the multiplication of the probability for each harmonic of each F0, as in Eq.

(2.14).

(2.14) Lnon-peak region(θ) ≈
∏
F0∈θ

∏
h∈{1···H}
Fh∈Fnp

1− P (eh = 1|F0) ,

where Fh = F0 + 12 logh
2 is the frequency (in semitones) of the predicted h-th harmonic

of F0; eh is the binary variable that indicates whether this harmonic is detected; Fnp is

the set of frequencies in the non-peak region; and H is the largest harmonic number we

consider.

In the definition of the non-peak region in Section 2.2, there is a parameter d controlling

the size of the peak region and the non-peak region. It is noted that this parameter does

not affect the peak-region likelihood, but only affects the non-peak region likelihood. This

is because the smaller d is, the larger the non-peak region is and the higher the probability

that the set of F0 estimates predicts harmonics in the non-peak region.

Although the power spectrum is calculated with a STFT and the peak widths (main

lobe width) are the same in terms of Hz for peaks with different frequencies, d should

not be defined as constant in Hz. Instead, d should vary linearly with the frequency (in

63

Hz) of a peak. This is because d does not represent the width of each peak, but rather

the possible range of frequencies in which a harmonic of a hypothesized F0 may appear.

This possible range increases as frequency increases. In this work, d is set to a musical

quarter tone, which is 3% of the peak frequency in Hz. This is also in accordance with

the standard tolerance of measuring correctness of F0 estimation.

Now, to model P (eh = 1|F0). There are two reasons that a harmonic may not be

detected in the non-peak region: First, the corresponding peak in the source signal was

too weak to be detected (e.g. high frequency harmonics of many instruments). In this

case, the probability that it is not detected can be learned from monophonic training

samples.

Second, there is a strong corresponding peak in the source signal, but an even stronger

nearby peak of another source signal prevents its detection. I call this situation masking.

As I am modeling the non-peak region likelihood, I only care about the masking that

happens in the non-peak region.

To determine when masking may occur with our system, I generated 100,000 pairs of

sinusoids with random amplitude differences from 0 to 50dB, frequency differences from 0

to 100Hz and initial phase difference from 0 to 2π. I found that as long as the amplitude

difference between two peaks is less than 50dB, neither peak is masked if their frequency

difference is over a certain threshold; otherwise the weaker one is always masked. The

threshold is 30Hz for a 46ms frame with a 44.1kHz sampling rate. These are the values

for frame size and sample rate used in our experiments.

For frequencies higher than 1030Hz, a musical quarter tone is larger than 1030×21/24 =

30.2Hz. The peak region contains frequencies within a quarter tone of a peak, Therefore,

64

if masking takes place, it will be in the peak region. In order to account for the fact that

the masking region due to the FFT bin size (30Hz) is wider than a musical quarter tone

for frequencies under 1030 Hz, I also tried a definition of d that chose the maximum of

either a musical quarter tone or 30Hz: d = max(0.5 semitone, 30Hz). I found the results

were similar to those achieved using the simpler definition of of d = 0.5 semitone.

Therefore, I disregard masking in the non peak region. I estimate P (enh = 1|F0), i.e.

the probability of detecting the h-th harmonic of F0 in the source signal, by running

our peak detector on the set of individual notes from a variety of instruments used to

compose chords in Section 2.6.1. F0s of these notes are quantized into semitones. All

examples with the same quantized F0 are placed into the same group. The probability of

detecting each harmonic, given a quantized F0 is estimated by the proportion of times a

corresponding peak is detected in the group of examples. The probability for an arbitrary

F0 is then interpolated from these probabilities for quantized F0s.

Figure 2.4 illustrates the conditional probability. It can be seen that the detection rates

of lower harmonics are large, while those of the higher harmonics become smaller. This is

reasonable since for many harmonic sources (e.g. most acoustic musical instruments) the

energy of the higher frequency harmonics is usually lower. Hence, peaks corresponding to

them are more difficult to detect. At the right corner of the figure, there is a triangular

area where the detection rates are zero, because the harmonics of the F0s in that area are

out of the frequency range of the spectrum.

65

Figure 2.4. The probability of detecting the h-th harmonic, given the F0:
P (eh = 1|F0). This is calculated from monophonic training data.

2.3. Estimating the Polyphony

Polyphony estimation is a difficult subproblem of multiple F0 estimation. Researchers

have proposed several methods together with their F0 estimation methods [66, 70, 93].

In this work, the polyphony estimation problem is closely related to the overfitting

often seen with maximum likelihood methods. Note that in Eq. (2.6), the F0 is selected

from the set of estimated F0s, θ, to maximize the likelihood of each normal peak. As

new F0s are added to θ, the maximum likelihood will never decrease and may increase.

Therefore, the larger the polyphony, the higher the peak likelihood is:

(2.15) Lpeak region(θ̂
n
) ≤ Lpeak region(θ̂

n+1
),

where θ̂
n

is the set of F0s that maximize Eq. (2.2) when the polyphony is set to n. θ̂
n+1

is defined similarly. If one lets the size of θ range freely, the result is that the explanation

returned would be the largest set of F0s allowed by the implementation.

66

This problem is alleviated by the non-peak region likelihood, since in Eq. (2.14),

adding one more F0 to θ should result in a smaller value Lnon-peak region(θ):

(2.16) Lnon-peak region(θ̂
n
) ≥ Lnon-peak region(θ̂

n+1
).

However, experimentally I found that the total likelihood L(θ) still increases when

expanding the list of estimated F0s:

(2.17) L(θ̂
n
) ≤ L(θ̂

n+1
).

Another method to control the overfitting is needed. I first tried using a Bayesian

Information Criterion, as in [34], but found that it did not work very well. Instead, I

developed a simple threshold-based method to estimate the polyphony N :

N = min
1≤n≤M

n,

s.t. ∆(n) ≥ T ·∆(M),(2.18)

where ∆(n) = lnL(θ̂
n
)− lnL(θ̂

1
); M is the maximum allowed polyphony; T is a learned

threshold. For all experiments in this paper, the maximum polyphony M is set to 9. T is

empirically determined to be 0.88. The method returns the minimum polyphony n that

has a value ∆(n) exceeding the threshold. Figure 2.5 illustrates the method. Note that

Klapuri [70] adopts a similar idea in polyphony estimation, although the thresholds are

applied to different functions.

67

1 2 3 4 5 6 7 8 9
Polyphony

Ln
 li

ke
lih

oo
d

T⋅∆(M)
∆(M)

Figure 2.5. Illustration of polyphony estimation. Log likelihoods given each
polyphony are depicted by circles. The solid horizontal line is the adaptive
threshold. For this sound example, the method correctly estimates the
polyphony, which is 5, marked with an asterisk.

2.4. Postprocessing Using Neighboring Frames

F0 and polyphony estimation in a single frame is not robust. There are often inser-

tion, deletion and substitution errors, see Figure 2.6(a). Since pitches of music signals

are locally (on the order of 100 ms) stable, it is reasonable to use F0 estimates from

neighboring frames to refine F0 estimates in the current frame. In this section, I propose

a refinement method with two steps: remove likely errors and reconstruct estimates.

Step 1: Remove F0 estimates inconsistent with their neighbors.

To do this, I build a weighted histogram W in the frequency domain for each time

frame t. There are 60 bins in W , corresponding to the 60 semitones from C2 to B6. Then,

a triangular weighting function in the time domain w centered at time t is imposed on

a neighborhood of t, whose radius is R frames. Each element of W is calculated as the

weighted frequency of occurrence of a quantized (rounded to the nearest semitone) F0

estimate. If the true polyphony N is known, the N bins of W with largest histogram

68

8.5 9 9.5

40

50

60

70

80

90

Time (second)

F
re

qu
en

cy
 (

M
ID

I n
um

be
r)

(a) Before refinement

8.5 9 9.5

40

50

60

70

80

90

Time (second)

F
re

qu
en

cy
 (

M
ID

I n
um

be
r)

(b) After refinement

Figure 2.6. F0 estimation results before and after refinement. In both fig-
ures, lines illustrate the ground-truth F0s, circles are the F0 estimates.

values are selected to form a refined list. Otherwise, I use the weighted average of the

polyphony estimates in this neighborhood as the refined polyphony estimate N , and then

form the refined list.

Step 2: Reconstruct the non-quantized F0 values.

I update the F0 estimates for frame t as follows. Create one F0 value for each histogram

bin in the refined list. For each bin, if an original F0 estimate (unquantized) for frame t

falls in that bin, simply use that value, since it was probably estimated correctly. If no

original F0 estimate for frame t falls in the bin, use the weighted average of the original

F0 estimates in its neighborhood in this bin.

In this work, R is set to 9 frames (90ms with 10ms frame hop). This value is not

optimized. Figure 2.6 shows an example with the ground truth F0s and F0 estimates

before and after this refinement. It can be seen that a number of insertion and deletion

errors are removed, making the estimates more “continuous”. However, consistent errors,

69

such as the circles in the top middle part of Figure 2.6(a), cannot be removed using this

method.

It is noted that a side effect of the refinement is the removal of duplicate F0 estimates

(multiple estimates within a histogram bin). This will improve precision if there are no

unisons between sources in the data set, and will decrease recall if there are.

2.5. Computational Complexity

I analyze the run-time complexity of Algorithm 1 in terms of the number of observed

peaks K and the maximum allowed polyphony M . We can ignore the harmonic number

upper bound H and the number of neighboring frames R, because both these variables

are bounded by fixed values.

The time of Line 2 through 4 is bounded by a constant value. Line 5 is a loop over

Line 6 through 9 with M iterations. Line 6 through 8 involves |C| = O(K) likelihood

calculations of Eq. (2.2). Each one consists of the peak region and the non-peak region

likelihood calculation. The former costs O(K), since it is decomposed into K individual

peak likelihoods in Eq. (2.4) and each involves constant-time operations. The latter

costs O(M), since we consider MH harmonics in Eq. (2.14). Line 11 involves O(M)

operations to decide the polyphony. Line 12 is a constant-time operation. Line 14 through

16 involve O(M) operations. Thus, total run-time complexity in each single frame is

O(MK2 + M2K)). If M is fixed to a small number, the run-time can be said to be

O(K2).

70

If the greedy search strategy is replaced by the brute force search strategy, that is, to

enumerate all the possible F0 candidate combinations, then Line 5 through 10 would cost

O(2K). Thus, the greedy approach saves considerable time.

Note that each likelihood calculation for Eq. (2.2) costs O(K + M). This is a sig-

nificant advantage compared with Thornburg and Leistikow’s monophonic F0 estimation

method [119]. In their method, to calculate the likelihood of a F0 hypothesis, they enu-

merate all associations between the observed peaks and the underlying true harmonics.

The enumeration number is shown to be exponential in K + H. Although a MCMC

approximation for the enumeration is used, the computational cost is still much heavier

than ours.

2.6. Experiments

2.6.1. Datasets

The monophonic training data are monophonic note recordings, selected from the Uni-

versity of Iowa website4. In total 508 note samples from 16 instruments, including wind

(flute), reed (clarinet, oboe, saxophone), brass (trumpet, horn, trombone, tuba) and arco

string (violin, viola, bass) instruments were selected. They were all of dynamic “mf” and

“ff” with pitches ranging from C2 (65Hz, MIDI number 36) to B6 (1976Hz, MIDI number

95). Some samples had vibrato. The polyphonic training data are randomly mixed chords,

generated by combining these monophonic note recordings. In total 3000 chords, 500 of

each polyphony from 1 to 6 were generated.

4http://theremin.music.uiowa.edu/

71

Chords were generated by first randomly allocating pitches without duplicates, then

randomly assigning note samples of those pitches. Different pitches might come from

the same instrument. These note samples were normalized to have the same Root-

Mean-Squared (RMS) amplitude, and then mixed to generate chords. In training, each

note/chord was broken into frames with length of 93 ms and overlap of 46 ms. A Short

Time Fourier Transform (STFT) with four times zero padding was employed on each

frame. All the frames were used to learn model parameters.

The polyphony estimation algorithm was tested using 6000 musical chords, 1000 of

each polyphony from 1 to 6. They were generated using another 1086 monophonic notes

from the Iowa data set. These were of the same instruments, pitch ranges, etc. as the

training notes, but were not used to generate the training chords. Musical chords of

polyphony 2, 3 and 4 were generated from commonly used note intervals. Triads were

major, minor, augmented and diminished. Seventh chords were major, minor, dominant,

diminished and half-diminished. Musical chords of polyphony 5 and 6 were all seventh

chords, so there were always octave relations in each chord.

The proposed multiple F0 estimation method was tested on the Bach10 dataset5. It

consists of 10 real music performances, totalling 330 seconds of audio. Each performance

was of a four-part Bach chorale, performed by a quartet of instruments: violin, clarinet,

tenor saxophone and bassoon. Each musician’s part was recorded in isolation while the

musician listened to the others through headphones. In testing, each piece was broken

into frames with length of 46 ms and a 10 ms hop between frame centers. All the frames

5Download at http://cs.northwestern.edu/~zdu459/resource/Resources.html.

http://cs.northwestern.edu/~zdu459/resource/Resources.html

72

were processed by the algorithm. We used a shorter frame duration on this data to adapt

to fast notes in the Bach chorales. The sampling rate of all the data was 44.1kHz.

2.6.2. Error Measures

The ground-truth F0s of the testing pieces were estimated using YIN [24] on the single-

instrument recordings prior to mixing recordings into four-part monaural recordings. The

results of YIN were manually corrected where necessary.

The performance of our algorithm was evaluated using several error measures. In the

Predominant-F0 estimation (Pre-F0) situation, only the first estimated F0 was evaluated

[53]. It was defined to be correct if it deviated less than a quarter tone (3% in Hz) from

any ground-truth F0. The estimation accuracy was calculated as the amount of correct

predominant F0 estimates divided by the number of testing frames.

In the Multi-F0 estimation (Mul-F0) situation, all F0 estimates were evaluated. For

each frame, the set of F0 estimates and the set of ground-truth F0s were each sorted in

ascending order of frequency. For each F0 estimate starting from the lowest, the lowest-

frequency ground-truth F0 from which it deviated less than a quarter tone was matched

to the F0 estimate. If a match was found, the F0 estimate was defined to be correctly

estimated, and the matched ground-truth F0 was removed from its set. This was repeated

for every F0 estimate. After this process terminated, unassigned elements in either the

estimate set or the ground-truth set were called errors. Given this, Precision, Recall and

Accuracy were calculated as:

(2.19) Precision =
#cor

#est
, Recall =

#cor

#ref
,

73

(2.20) Accuracy =
#cor

#est + #ref−#cor
,

where #ref is the total number of ground truth F0s in testing frames, #est is the total

number of estimated F0s, and #cor is the total number of correctly estimated F0s.

Octave errors are the most common errors in multiple F0 estimation. Here we calculate

octave error rates as follows: After the matching process in Mul-F0, for each unmatched

ground-truth F0, we try to match it with an unmatched F0 estimate after transcribing the

estimate to higher or lower octave(s). Lower-octave error rate is calculated as the number

of these newly matched F0 estimates after a higher octave(s) transcription, divided by

the number of ground-truth F0s. Higher-octave error rate is calculated similarly.

For polyphony estimation, a Mean Square Error (MSE) measure is defined as:

(2.21) Polyphony-MSE = Mean
{

(Pest − Pref)
2
}
,

where Pest and Pref are the estimated and the true polyphony in each frame, respectively.

2.6.3. Comparison Methods

Since the proposed method is related to existing methods based on modeling spectral

peaks, it would be reasonable to compare to these systems. I choose one of the best

performed method in this category, proposed by Pertusa and Iñesta in [93] (denoted

as “Pertusa08”) as a comparison method. I do not compare with [52, 83, 119], as

they are all single F0 estimation methods. I do not compare with [77] either, as its

computational complexity makes it prohibitively time-consuming, as shown in Section 2.5.

Besides Pertusa08, I also compare with a method proposed by Klapuri in [70] (denoted

74

as “Klapuri06”). Both Klapuri06 and Pertusa08 were in the top 3 in the “Multiple

Fundamental Frequency Estimation & Tracking” task in the Music Information Retrieval

Evaluation eXchange (MIREX) in 2007 and 2008 6.

Klapuri06 works in an iterative fashion by estimating the most significant F0 from the

spectrum of the current mixture and then removing its harmonics from the mixture spec-

trum. It also proposes a polyphony estimator to terminate the iteration. Pertusa08 selects

a set of F0 candidates in each frame from spectral peaks and generates all their possible

combinations. The best combination is chosen according to their harmonic amplitudes

and a proposed spectral smoothness measure. The polyphony is estimated simultaneously

with the F0s. For both reference methods, we use the authors’ original source code and

suggested settings in our comparison.

2.6.4. Multiple F0 Estimation Results

Results reported here are for the 330 seconds of audio from ten four-part Bach chorales

described in Section 2.6.1. Our method and the reference methods are all evaluated

once per second, in which there are 100 frames. Statistics are then calculated from the

per-second measurements.

I first compare the estimation results of the three methods in each single frame without

refinement using context information. Then I compare their results with refinement. For

Klapuri06, which does not have a refinement step, I apply the proposed context-based

refinement method (Section 2.4) to it. I think this is reasonable because our refinement

method is quite general and not coupled with our single frame F0 estimation method.

6http://www.music-ir.org/mirex/

http://www.music-ir.org/mirex/

75

Pertusa08, has its own refinement method using information across frames. Therefore, I

use Pertusa08’s own method. Since Pertusa08 estimates all F0s in a frame simultaneously,

Pre-F0 is not a meaningful measure on this system. Also, Pertusa08’s original program

does not utilize the polyphony information if the true polyphony is provided, so Mul-F0

Poly Known is not evaluated for it.

Figure 2.7 shows box plots of F0 estimation accuracy comparisons. Each box rep-

resents 330 data points. The lower and upper lines of each box show 25th and 75th

percentiles of the sample. The line in the middle of each box is the sample median, which

is also presented as the number below the box. The lines extending above and below each

box show the extent of the rest of the samples, excluding outliers. Outliers are defined as

points over 1.5 times the interquartile range from the sample median and are shown as

crosses.

As expected, in both figures the Pre-F0 accuracies of both Klapuri06’s and the pro-

posed one are high, while the Mul-F0 accuracies are much lower. Before refinement, the

results of the proposed system are worse than Klapuri06’s and Pertusa08’s. Take Mul-F0

Poly Unknown as an example, the median accuracy of our method is about 4% lower than

Klapuri06’s and 2% lower than Pertusa08’s. This indicates that Klapuri06 and Pertusa08

both gets better single frame estimation results. A nonparametric sign test performed

over all measured frames on the Mul-F0 Poly Unknown case shows that Klapuri06 and

Pertusa08 obtains statistically superior results to our method with p-value p < 10−9 and

p = 0.11, respectively.

After the refinement, however, our results are improved significantly, while Klapuri06’s

results generally stay the same and Pertusa08’s results are improved slightly. This makes

76

(a) Before refinement

(b) After refinement

Figure 2.7. F0 estimation accuracy comparisons of Klapuri06 (gray), Per-
tusa08 (black) and our method (white). In (b), Klapuri06 is refined with
our refinement method and Pertusa08 is refined with its own method.

our results better than Klapuri06’s and Pertusa08’s. Take the Mul-F0 Poly Unknown

example again, the median accuracy of our system is about 9% higher than Klapuri06’s

77

Table 2.4. Mul-F0 estimation performance comparison, when the
polyphony is not provided to the algorithm.

Accuracy Precision Recall
Klapuri06 59.7±11.6 86.1±9.6 66.0±11.5
Pertusa08 57.3±11.4 84.6±13.5 63.7±9.6
Our method 68.9±10.8 82.7±8.1 80.2±10.3

and 10% higher than Pertusa08’s. A nonparametric sign test shows that our results are

superior to both reference methods with p < 10−25.

Since I apply the proposed post-processing method on Klapuri06 and it removes in-

consistent errors while strengthening consistent errors, I believe that the estimation errors

in Klapuri06 are more consistent than the proposed method.

Remember that removing duplicates is a side effect of the proposed post-processing

method. Since the proposed base method allows duplicate F0 estimates, but the data

set rarely contains unisons between sources, removing duplicates accounts for about 5%

of Mul-F0 accuracy improvement for the proposed method in both Poly Known and

Unknown cases. Since Klapuri06 removes duplicate estimates as part of the approach,

this is another reason the proposed refinement has less effect on Klapuri06.

Figure 2.7 shows a comparison of the proposed full system (white boxes in (b)) to the

Kapuri06 as originally provided to us (gray boxes in (a)) and Pertusa08’s system (black

box in (b)). A nonparametric sign test on the Mul-F0 Poly Unknown case shows the

proposed system’s superior performance was statistically significant with p < 10−28.

Table 2.4 details the performance comparisons of Mul-F0 Poly Unknown in the format

of “Mean±Standard deviation” of all three systems. All systems had similar precision,

78

however Klapuri06 and Pertusa08 showed much lower accuracy and recall than the pro-

posed system. This indicates both methods underestimate the number of F0s. This

analysis is supported in the analysis of polyphony estimation.

2.6.5. Polyphony Estimation Results

Since polyphony estimation is a difficult task itself, I evaluated all three methods on

this task. Among the 33,000 frames in Bach chorale test data, 29,687 had instruments

sounding. Since all the pieces are quartets, and every instrument is active all along, the

ground-truth polyphony is set to four for every frame with instruments sounding (I ignore

the few frames that some performer ended or started a touch early).

Figure 2.8 shows the polyphony estimation histograms for all three methods without

and with the refinement step. It can be seen that before refinement, all the methods tend

to underestimate the polyphony. However, in both cases, our method obtains a better

result with a lower MSE value than Klapuri06 and Pertusa08. Moreover, our refinement

step improves the results for both Klapuri06 and our method, and finally our method

obtains a symmetric histogram around the true polyphony as Figure 2.8 (f) shows.

In order to evaluate our polyphony estimation method (Section 2.3 without refine-

ment) more comprehensively, I tested it on single frames of musical chords with differ-

ent polyphony. Figure 2.9 shows the results. It can be seen that in most examples of

polyphony from 1 to 4, the system outputs the correct polyphony. However, for polyphony

5 and 6, the polyphony estimation results are not satisfying. One of the reason is that

F0s with octave relations are difficult to estimate using our algorithm. In our data set,

chords of polyphony 1, 2, 3 and 4 do not have octave relations. Each chord of polyphony

79

1 2 3 4 5 6 7 8 9
0

20

40 * MSE:
1.95

(a) Klapuri06

1 2 3 4 5 6 7 8 9
0

20

40

60
* MSE:

2.27

(b) Pertusa08

1 2 3 4 5 6 7 8 9
0

20

40 * MSE:
1.11

(c) Our method

1 2 3 4 5 6 7 8 9
0

20

40
* MSE:

0.96

(d) Klapuri06 with
our refinement

1 2 3 4 5 6 7 8 9
0

20

40
* MSE:

2.22

(e) Pertusa08 with
its own refinement

1 2 3 4 5 6 7 8 9
0

20

40

60 * MSE:
0.49

(f) Our method with
our refinement

Figure 2.8. Polyphony estimate histogram on the total 33,000 frames of
the testing music pieces. X-axes represent polyphony. Y-axes represent the
proportion of frames (%). The asterisk indicates the true polyphony.

5 contains a pair of pitches related by an octave. This means 40% of the pitches are in

an octave relation. Each chord of polyphony 6 contains two pairs, giving 66.7% of the

pitches in an octave relation. Thus, the tendency to underestimate their polyphony is not

surprising.

1 2 3 4 5 6 7 8 9
0

20

40

60

80 * MSE:
 1.29

1 2 3 4 5 6 7 8 9
0

20

40

60
* MSE:

 1.22

1 2 3 4 5 6 7 8 9
0

20

40

60

80 * MSE:
 1.09

1 2 3 4 5 6 7 8 9
0

20

40

60 * MSE:
 1.07

1 2 3 4 5 6 7 8 9
0

20

40 * MSE:
 1.34

1 2 3 4 5 6 7 8 9
0

20

40
* MSE:

 2.62

Figure 2.9. Polyphony estimation histogram of musical chords with
polyphony from 1 to 6. X-axes represent polyphony. Y-axes represent
the proportion of frames (%). The asterisk indicates the true polyphony.

80

2.6.6. Individual Analysis of System Components

When a new approach is introduced, it may not always be clear which aspects of it

contribute most strongly to its performance. I now investigate the effectiveness of different

techniques that are used in our method: modeling peak frequencies and amplitudes,

considering the possibility of spurious peaks, modeling the non-peak region, and refining

F0 estimates using neighboring frames. In this experiment, we compare the F0 estimation

accuracies with different system configurations:

• 1: models peak frequency deviations with a single Gaussian, as in [52].

• 2: models peak frequency deviations with a GMM model.

• 3: system 2 + models peak amplitudes with the non-parametric model in Eq.

(2.12).

• 4: system 3 + considers the possibility of spurious peaks.

• 5: system 4 + models the non-peak region with Eq. (2.14).

• 6: system 5 + refines F0 estimates, as in Section 2.4.

Box plots of F0 estimation accuracies of these systems when the true polyphony is

provided are illustrated in Figure 2.10. Again, each box represents 330 data points,

corresponding to the 330 seconds of our testing pieces. For Pre-F0 results, systems except

2 and 3 are all higher than 90%. From System 2 to 3, the single Gaussian is replaced by a

GMM to model the peak frequency deviation, which makes it possible to represent the tail

of the distribution in Figure 2.2. Therefore, the frequency restriction of each F0 estimate

is loosened, and the accuracy of the predominant F0 estimate is lower. However, after

adding the spurious peak model in System 4 and the non-peak region model in System

5, more restrictions are added to F0 estimates and the accuracy is improved. Finally,

81

1 2 3 4 5 6
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)
91.0

61.0 61.2

91.8

94.9

100.0

(a) Pre-F0

1 2 3 4 5 6
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

43.8 46.5 45.2 47.4

54.7

72.0

(b) Mul-F0

Figure 2.10. F0 estimation accuracy of different system configurations of
our method, when the true polyphony is provided. The x-axes are system
configuration numbers.

the F0 refinement technique improves the Pre-F0 median accuracy to 100.0%. It is noted

that the predominant F0 estimate in a frame after the refinement may not be the same

82

predominant F0 estimate as before, instead, it is the best predominant F0 estimate in the

neighborhood, hence is more robust.

For Mul-F0, the F0 estimation accuracy generally increases from System 1 to 6. There

are three main improvements of the median accuracy: a 2.7% increase by replacing the

single Gaussian with a GMM of modeling peak frequency deviations (System 1 to 2); a

7.3% increase by adding the non-peak region model (System 4 to 5); a 17.3% increase

by F0 refinement (System 5 to 6). All of these improvements are statistically significant

with p < 10−8 in a nonparametric sign test. The only decrease occurs when adding the

peak amplitude model (System 2 to 3). This indicates that the peak amplitude model

parameters learned from randomly mixed chords are not suitable for the testing music

pieces. In fact, when we train the peak likelihood parameters using 5 testing music pieces

and test on all the 10 pieces, System 2 achieves 46.0% (0.5% lower), while System 3

achieves Mul-F0 accuracy median of 49.5% (4.3% higher). This indicates two things:

First, the peak frequency deviation model is well learned from randomly mixed chords;

Second, the peak amplitude (timbre information) modeling is helpful only if the training

data are similar to the testing data. However, due to the timbral variety of music, this

situation can be rare. This is in accordance with Klapuri’s observation in [69, 70], where

he employs a spectral whitening technique to remove timbre information of both training

and testing signals.

As octave errors are the most frequency errors in multiple F0 estimation, Figure 2.11

shows the octave error rates of our systems. System 1 to 4 have much more lower-octave

errors than higher-octave errors. This supports our claim that only modeling peaks will

cause many lower octave errors. From System 4 to 5, lower-octave errors are significantly

83

Figure 2.11. Octave error (gray: lower-octave error, white: higher-octave
error) rates of different system configurations of our method, when the true
polyphony is provided. The x-axis is the system configuration number.

reduced because of the non-peak region model, as they have a small non-peak region

likelihood. Lower-octave and higher-octave errors are then approximately balanced. It

is noted that this balance is achieved automatically by our probabilistic model, while it

is achieved by manual assignment of the balancing factor ρ in [83]. Finally, both octave

errors are significantly reduced by the refinement.

The proposed system was submitted to the “Multiple Fundamental Frequency Estima-

tion & Tracking” task in MIREX 2009 and 2010. “DHP2” is the system we described in

this paper and “DHP1” is the multi-pitch tracking system built based on “DHP2”. Both

systems obtained good results. The results can be accessed at http://www.music-ir.

org/mirex/wiki/2009:MIREX2009_Results and http://www.music-ir.org/mirex/wiki/

2010:MIREX2010_Results, respectively.

http://www.music-ir.org/mirex/wiki/2009:MIREX2009_Results
http://www.music-ir.org/mirex/wiki/2009:MIREX2009_Results
http://www.music-ir.org/mirex/wiki/2010:MIREX2010_Results
http://www.music-ir.org/mirex/wiki/2010:MIREX2010_Results

84

2.7. Conclusions

In this chapter, I proposed a maximum likelihood approach for multiple F0 estima-

tion, where the power spectrum of a time frame is the observation and the F0s are the

parameters to be estimated. The proposed method reduces the power spectrum into a

peak region and a non-peak region, and the likelihood function is defined on both parts.

The peak region likelihood is defined as the probability that a peak is detected in the

spectrum given a set of F0s. The non-peak region likelihood is defined as the probability

of not detecting any harmonics in the non-peak region. The two parts act as a comple-

mentary pair. To solve the combinatorial problem of simultaneously estimating F0s, I

adopted an iterative estimation strategy to estimate F0s one by one. As expanding the

number estimated F0s in each iteration, the total likelihood increases. I then proposed

a polyphony estimation method by setting a threshold of the likelihood improvement.

Finally, I proposed a refinement method to refine the F0 estimates using neighboring

frames. This method removes a lot of inconsistent errors.

I tested the proposed approach on a corpus of 10 instrumental recordings of J. S.

Bach quartets. The results show the proposed approach outperforms two state-of-the-

art algorithms on this data set on both F0 estimation and polyphony estimation. The

polyphony estimation method is also tested on 6,000 musical chords. Good results are

obtained when there is no octave relation between pitches. It is noted that our system

was trained using randomly mixed chords and monophonic notes, while tested on music

pieces and musical chords. This indicates the generality of the proposed system.

The proposed multiple F0 estimation method not only works for music audio, it can

be applied to sound mixtures composed of any kinds of harmonic sound sources, with

85

minimal changes. In Chapter 4 I will present some results on multi-talker speech data.

The biggest change in adapting the proposed method to different data is in the training

process. The maximum likelihood parameters need to be trained on the audio mixtures

of the same kind of harmonic sources.

For sounds having octave-related pitches, the performance of the proposed method

will deteriorate, due to the binary masking assumption adopted in the peak region likeli-

hood definition. Since octaves are the most common intervals encountered in music, this

problem should be addressed in future work. The current formulation limits the use of

the method to harmonic sounds, but it should not be hard to extend it to quasi-harmonic

sounds. The only change will occur in the calculation of the harmonic number of each

peak.

Finally, the proposed method only estimates pitches in each individual frame. Al-

though the post-processing module uses information from neighboring frames, it does not

tell how the pitches are connected, i.e how the pitches of each source evolve. Connecting

pitch estimates in individual frames into pitch trajectories across time frames is called

Multi-pitch Streaming (MPS). This is an important intermediate step towards MASA of

harmonic sound mixtures. In the next chapter, I will describe my work on MPS.

86

CHAPTER 3

Multi-pitch Streaming

3.1. Introduction

In Chapter 2 I described my work on Multi-pitch Estimation (MPE), which is the

first level of the multi-pitch analysis problem. In this chapter, I propose an approach

to address the third level, Multi-pitch Streaming (MPS). This approach requires three

inputs: the original audio mixture, the estimated pitches at every time frame from an

existing MPE algorithm, and the number of sources. This approach assumes monophonic

and harmonic sound sources and streams pitch estimates into multiple pitch trajectories,

each of which corresponds to an underlying source.

3.1.1. Related Work

Few perform multi-pitch analysis at the streaming level. Kashino and Murase [67] pro-

posed a Bayesian network approach to integrate musicological and timbre information to

stream pitches of multiple concurrent monophonic musical instruments. However, this

method requires ground-truth notes (with both pitch and time information) as inputs. It

has not been tested in more realistic scenarios where the inputs are estimated pitches at

the frame level.

Vincent [123] proposed a three-layer (state, source, and mixture) Bayesian network to

estimate the pitches and separate the signals of musical instruments in a stereo recording.

87

The approximate azimuths of the instruments are required as input. The parameters of

the network need to be pre-learned from solo or mixture recordings of these instruments.

Bay et al. [5] proposed to estimate and stream pitches of polyphonic music using a

probabilistic latent component analysis framework. This method also needs to pre-learn

a spectral dictionary for each pitch of each instrument present in the mixture, from their

isolated recordings.

Wohlmayr et al. [136] proposed a factorial hidden Markov model to estimate and

stream pitches of two simultaneous talkers. The model parameters need to be trained

for the talkers present in the mixture using their isolated recordings. These supervised

methods prevent their usage in many scenarios when prior training on specific sources is

unavailable.

Recently, Hu and Wang [61] proposed an unsupervised approach to estimate and

stream pitches, and separate their signals of two simultaneous talkers. However, this

approach was proposed only for speech and has not been tested for other kinds of audio

data such as music.

In psychoacoustics, sequential grouping refers to the human auditory scene analysis

process that streams auditory scene segments into meaningful auditory events [8]. Multi-

pitch streaming can be viewed as a special kind of sequential grouping process, where

the auditory scene segments are pitches and the meaningful auditory events are pitch

trajectories of sound sources. A related concept is simultaneous grouping, which refers to

the process of grouping simultaneous time-frequency elements into meaningful auditory

events. MPE can be viewed as a kind of simultaneous grouping process.

88

The proposed approach (MPE + streaming) to address the third-level multi-pitch

analysis problem lies in the framework of performing simultaneous grouping and sequential

grouping in a sequence. This framework is feed-forward and does not use information from

the streaming level to inform an existing MPE module. This would not be optimal, as the

interplay between simultaneous grouping and sequential grouping is ubiquitous in human

auditory scene analysis [8]. In addition, errors generated in the MPE stage may cause

additional errors in the streaming stage. A wrong pitch estimate that is streamed to a

source will prevent another correct pitch estimate in the same frame being streamed to

that source.

For example, suppose there are two instruments. The first instrument plays two notes

C4-D4 in a sequence. The second instrument plays G4-C5 in a sequence, and the two

instruments switch notes at the same time. If the MPE stage wrongly estimates the latter

part of the C4 note as C5, then these pitch estimates will probably be streamed with the

C5 note of the second instrument through must-links. This error will in turn cause the

G4 note of the second instrument to be excluded from the second instrument, due to its

cannot-links to the latter part of the wrongly estimated and streamed C4 note.

However, the simplicity and clarity of our modular design let me build on existing

work in MPE and independently optimize different levels of the system, whereas jointly

determining pitch candidates and their streams may require a very complicated model

and be computational intractable.

An alternate way to combine sequential and simultaneous grouping is to first do se-

quential grouping (partial tracking) then do simultaneous grouping (grouping partials into

sources). In the literature, partial tracking is addressed by assuming the value continuity

89

[84] or the slope continuity [25] of the frequencies and amplitudes of partials. Therefore, a

tracked partial would not be longer than a note or a syllable, and the “birth” and “death”

of partials need to be addressed. In [73], a clustering approach based on frequency and

amplitude continuity is proposed to track partials and group them into sources simultane-

ously, however, it still cannot group non-continuous partials since no timbre information

is used.

3.1.2. Advances of the Proposed Method

I formulate the MPS problem as a constrained clustering problem, where the clustering

objective is to maintain timbre consistency and the constraints are based on the relation-

ships between pitch estimates in time and frequency. This work has been published in

[29]. Compared to existing methods, this approach has the following advances:

• Unsupervised. It does not require training source models using isolated recordings

of the underlying sources.

• General. It can deal with both music and speech, whereas existing approaches

deal with either music or speech.

• Compatible. It can work with any MPE algorithm.

Table 3.1 summarizes the comparison of the proposed approach with existing ap-

proaches.

As a side product, I also propose a new cepstrum feature called the Uniform Discrete

Cepstrum (UDC) to represent timbre of sound sources. It can be calculated from a number

of points of the spectrum instead of the full spectrum, which makes it more suitable for

representing timbre in multi-source mixtures than standard cepstral representations such

90

Table 3.1. Comparison of the proposed method with existing multi-pitch
streaming methods.

[67] [123] [5] [136] [61] Proposed
Works on music data X X X X

Works on speech data X X X
Does not require pre-training source models X X X X

Tested on a large dataset X X X X

as Mel-frequency Cepstral Coefficients (MFCC). Multi-pitch streaming results using UDC

outperform those using MFCC and another timbre feature.

3.2. Streaming as Constrained Clustering

I formulate the streaming problem as a constrained clustering problem, where the

system takes three inputs: the original audio mixture, the set of instantaneous pitch es-

timates provided at each time frame by an existing multi-pitch estimation system, and

the number of sources. The clustering objective is to maintain timbre consistency, based

on the assumption that sound objects coming from the same source have similar timbre.

Must-link constraints are imposed between pitches that are close in both time and fre-

quency, to encourage them to be clustered into the same trajectory. I impose cannot-link

constraints between pitches at the same time frame, to prevent them being assigned to the

same source. We propose a novel algorithm to solve this constrained clustering problem.

3.2.1. Streaming Pitches by Clustering

I assume an audio mixture containing K monophonic sound sources. For each time

frame we assume we have the output of a multi-pitch estimator that provides at most K

concurrent pitch estimates. I associate the ith pitch estimate with a timbre represented

as an n-dimensional vector ti.

91

I view the multi-pitch streaming problem as a pitch clustering problem, where each

cluster is a pitch stream corresponding to a source. The clustering objective is defined as

minimizing the total within-stream distance of the timbres of the pitch estimates:

(3.1) f(Π) =
K∑
k=1

∑
ti∈Sk

‖ti − ck‖2.

Here, Π is a partition of the pitch estimates into K streams; ti is the timbre feature vector

of pitch i; ck is the centroid of timbres in stream Sk; and ‖·‖ denotes the Euclidean norm.

This is the same as the K-means clustering objective.

To justify the clustering objective function, we note that humans use timbre to dis-

criminate and track sound sources [8]. Given an appropriate timbre feature, I expect that

a note (vowel) has more similar timbre to another note (vowel) produced by the same

instrument (talker), than to that produced by a different instrument (talker). Different

choices of timbre vectors can be found in Section 3.4.

3.2.2. Adding Locality Constraints

With an appropriate timbre feature (see Section 3.4 for the timbre features used in this

work), we can cluster pitch estimates to minimize the intra-cluster timbre inconsistency in

Eq. (3.1), using the K-means algorithm. However, it is not enough to provide satisfying

pitch streaming results, as shown in Figure 3.1.

In the middle panel of Figure 3.1, a number of pitches are clustered into the wrong

trajectory. For example, the pitches around MIDI number 55 from 14.8 sec to 15.8 sec

form a continuous contour and are all played by the bassoon. However, in the resulted

clustering, some of them are assigned to saxophone. In another example, from 16.8 sec

92

14 15 16 17 18 19

54

56

58

60

62

Time (second)

P
itc

h
(M

ID
I n

um
be

r)

Ground−truth pitch trajectories

14 15 16 17 18 19

54

56

58

60

62

Time (second)

P
itc

h
(M

ID
I n

um
be

r)

Results by minimizing the objective

14 15 16 17 18 19

54

56

58

60

62

Time (second)

P
itc

h
(M

ID
I n

um
be

r)

Results by the proposed method

Figure 3.1. Comparison of the ground-truth pitch streams, K-means clus-
tering (K = 2) results (i.e. only minimizing the objective function), and the
proposed method’s results (i.e. considering both objective and constraints).
Both the K-means and the proposed method take the ground-truth pitches
as inputs, use 50-d harmonic structure from Section 3.4 as the timbre fea-
ture, and randomly initialize their clusterings. Each point in these figures
is a pitch. Different instruments are marked with different markers (circles
for saxophone and dots for bassoon).

93

to 17.6 sec, the K-means clustering puts two simultaneous pitches into the saxophone

stream. This is not reasonable, since saxophone is a monophonic instrument.

If we know that different sources do not often perform the same pitch at the same time

and all sources are monophonic, we can impose two kinds of constraints on some pairs of

the pitches to improve clustering: A must-link constraint is imposed between two pitches

that differ less than ∆t in time and ∆f in frequency. It specifies that two pitches close in

both time and frequency should be assigned to the same cluster. A cannot-link constraint

is imposed between two pitches in the same frame. It specifies that two simultaneous

pitches should be assigned to different clusters. These must-links and cannot-links form

the set of all constraints C. The bottom panel of Figure 3.1 shows the result obtained

from our proposed algorithm, considering both the objective and constraints.

3.2.3. Constrained Clustering and Its Properties

Given the clustering objective and constraints, the multi-pitch streaming problem becomes

a constrained clustering problem with binary constraints. In seeking a good clustering,

the objective function (within-stream timbre inconsistency) should be minimized while

the constraints (assumptions about pitch relationship) should be satisfied.

There exist a number of constrained clustering algorithms [131, 132, 21] that deal

with binary constraints, however, they cannot be applied due to the problem’s unique

properties:

• Inconsistent Constraints: Constraints are imposed on pitch estimates which con-

tain errors, hence the constraints themselves also contain errors. Also, the as-

sumptions that the constraints are based on are not always correct. Two sources

94

may occasionally perform the same pitch, and two pitches produced by the same

monophonic source may be concurrent due to room reverberation. Therefore, the

constraints may not be consistent with each other.

• Heavily Constrained: Since the pitch of each source often evolves smoothly over

short periods (several frames), almost every pitch estimate is involved in some

must-links. Also, since most of the time there are multiple sound sources playing

simultaneously, almost every pitch estimate is involved in some cannot-links. This

makes the clustering problem heavily constrained.

Because of the “Inconsistent Constraints” property, there may not exist any clustering

satisfying all the constraints. This makes existing algorithms [131, 132] inapplicable,

since they attempt to find a clustering minimizing the objective while satisfying all the

constraints. Even if we assume all constraints are consistent, [21] proved that finding a

feasible solution, i.e. a label assignment without violating any constraint, of a clustering

problem containing cannot-links is NP-complete.

Therefore, we should not try to satisfy all the constraints. Instead, I seek an algorithm

that minimizes the objective while satisfying as many constraints as possible. An Incre-

mental Constrained Clustering algorithm [21] fits this purpose. It starts from an initial

clustering of the data Π0 that satisfies a subset of all the constraints C0 ⊂ C and then

incrementally adds constraints in following iterations. However, I will show that [21] is

inapplicable to our problem in Section 3.3.1. Thus, I need to design a new incremental

constrained clustering algorithm for the MPS problem.

95

3.3. Algorithm

In this work, a point p is a pitch estimate with an associated fundamental frequency,

time, and timbre. A partition Π is an assignment of each pitch estimate to exactly one

of K streams (clusters). This is also referred to as a clustering. The objective function

f(Π) returns the total within-stream timbre inconsistency, as described in Eq. (3.1).

In this section I describe a novel incremental constrained clustering algorithm. It

starts from an initial partition Π0 that satisfies a subset of all the constraints C0 ⊂ C.

Then it iteratively minimizes the objective function while incrementally satisfying more

constraints. Note that, although I apply it to the streaming problem, the algorithm is

more general than that and may be applied to any problem of set partitioning under

constraints with an objective function.

3.3.1. Forming the Initial Partition

For a general incremental constrained clustering problem, the initial partition Π0 can

be simply set by a random label assignment of all the instances. For our multi-pitch

streaming problem, we can have a more meaningful initialization: I set Π0 by sorting

pitches in each frame from high to low and assigning labels from 1 to K. This is possible

because, if there are K monophonic sound sources, there are at most K pitches in each

frame. We call this pitch-order initialization.

For many audio mixtures, including much polyphonic music and two-talker speech of

different genders, pitch-order initialization is more informative than random initialization.

This is because pitch streams do not often interweave in these cases. Nevertheless, pitch-

order initialization does not solve the streaming problem even in these cases. This is

96

because the algorithm takes pitch estimates as inputs, which contain many polyphony

and pitch errors, and the ordering will be messed up. In the experiments, I will compare

the effects of different initializations.

For pitch-order initialization Π0, its satisfied constraints C0 contains all cannot-links

in C. This is because cannot-links are only imposed on concurrent pitches, which are

assigned to different clusters (streams) in Π0.

Given Π0 and C0, we want to minimize the objective function while incrementally

adding constraints. Davidson et al. [21] showed that incrementally adding new con-

straints is NP-hard in general, but they identified several sufficient conditions under which

the clustering could be efficiently updated to satisfy the new and old constraints. The con-

ditions require either 1) at least one point involved in the new constraint is not currently

involved in any old constraint or 2) the new constraint is a cannot-link.

For our problem, however, from the initial constraints C0, neither of the two conditions

can be met. This is because: 1) Due to the “Heavily Constrained” property, almost every

pitch estimate has already been constrained by some cannot-links, so Condition 1 is not

met. 2) Since all the cannot-links are already in C0, any new constraint will be a must-

link, so Condition 2 is not met. Therefore, the algorithm in [21] will do nothing beyond

the pitch-order initialization.

3.3.2. A Novel Incremental Constrained Clustering Algorithm

Here I describe a new incremental constrained clustering algorithm (see Algorithm 2)

that alternately updates the partition and set of satisfied constraints, starting from initial

partition Π0 and satisfied constraints C0.

97

Suppose we are in the t-th iteration, where the previous partition is Πt−1 and the

set of constraints that it satisfies is Ct−1. We first update Πt−1 to a new partition Πt

which strictly decreases the objective function and also satisfies Ct−1 (Line 4). We then

find which (if any) constraints that Πt satisfies, which were not satisfied by Πt−1. We

add those constraints to the set of satisfied constraints, giving us Ct (Line 5). So we

have f(Πt−1) > f(Πt) and Ct−1 ⊆ Ct. Although in some iterations Πt does not satisfy

more constraints than Πt−1 and Ct−1 = Ct, in general the set of satisfied constraints will

expand. The key of this algorithm is Line 4, and will be explained in Section 3.3.3 and

Algorithm 3. If no new partition is returned in Line 4, Algorithm 2 will terminate. I will

show that it always terminates in Section 3.3.6.

Algorithm 2: IncrementalClustering

Input : N points to be partitioned into K clusters; f : the objective function to
be minimized; C: the set of all constraints; Π0: initial partition; C0 ⊆ C:
constraints satisfied by Π0.

Output: A partition Πt and constraints it satisfies, Ct.
1 t← 0;
2 do
3 t← t+ 1;
4 Πt = FindNewPartition(Πt−1,Ct−1,f);
5 Ct = The set of constraints satisfied by Πt;
6 while Πt 6= Πt−1;
7 return Πt and Ct;

3.3.3. Find A New Partition by Swapping Labels

In Line 4 of Algorithm 2, we want to update Πt−1 to a new partition Πt that strictly

decreases the objective function and also satisfies the constraints in Ct−1. I do this by

moving at least one point between streams in Πt−1. However, if we move some point p

98

(recall points are pitch estimates) from cluster Sk to cluster Sl (recall clusters are streams),

all the points that have a must-link to p according to Ct−1 should be moved from Sk to Sl,

because we want Ct−1 to be satisfied by the new partition as well. Then all the points in

Sl that have cannot-links to any of the above-mentioned points need also be moved out of

Sl. If they are moved to another stream Sm, then the points in Sm that have cannot-links

with the above-mentioned points in Sl according to Ct−1 need to be moved, and this will

cause a chain reaction.

I deal with this issue by defining the swap set of points that may be affected by

changing the stream of p from Sk to Sl. Then I will define the swap operation to change

the cluster label for all points in the swap set without breaking any currently-satisfied

constraints in Ct−1.

Given a node p and two streams Sk and Sl, the swap set is the set of points from these

clusters that have a path to p through the currently satisfied constraints in Ct−1, subject

to that the path only involves points from streams Sk and Sl. Note that a currently

satisfied constraint involving points from other streams is not an edge here. In other

words, the swap set is the maximally connected subgraph containing p between streams

Sk and Sl.

Consider the left panel of Figure 3.2. Suppose we want to move point 6 in the left

panel from black to white. The swap set for point 6 in a black-white swap is the set of

points 1, 2, 4, 6 and 7. They form the maximally connected graph containing the point 6

between the two clusters, using the currently satisfied constraints as edges. The swap set

for point 6 in a black-gray swap is points 3, 5, 6, 7.

99

(a) before swap (b) after swap

Figure 3.2. An illustration of the swap operation. Here we have 9 points
from 3 streams (white, gray and black). Must-links are depicted as lines
without arrows, and cannot-links are lines with arrows. Constraints satisfied
by the current partition are in solid lines, and those not satisfied are in
dotted lines.

In our implementation, for each point we use two lists to store the currently satisfied

must-links and cannot-links that involve the point. To find a swap set between Sl and

Sk, we start from a point in Sl and first expand the swap set by incorporating the points

that have must-links to it. We then expand the swap set by incorporating the points that

are in Sk and have cannot-links to all the points in the current swap set. We then expand

their must-links, then cannot-links, etc., until the swap set does not expand anymore.

The swap operation involves flipping the cluster for all points in the swap set. Those

formerly in Sl move to Sk. Those formerly in Sk move to Sl. Figure 3.2 illustrates a

white-black swap. Here, we swap these five points and get a new partition shown in the

right panel. The new partition satisfies all the constraints that were satisfied before, but

it also satisfies two more constraints in this example, i.e. the cannot-link between point

7 and 8, and the must-link between point 7 and 9.

3.3.4. Proof Constraints are Preserved by a Swap

The swap operation is guaranteed to preserve all currently-satisfied constraints. Proof:

100

Split the constraints satisfied prior to swap into those between points within the swap

set, and those involving points outside the swap set. First consider the within-swap-set

constraints. All satisfied must-links between points in the swap-set remain satisfied after

a swap. This is true because all points in the swap set that share a cluster prior to the

swap will share a cluster after the swap. Similarly, all cannot-links between points in the

swap-set remain satisfied, since all points which are not in the same cluster are still not

in the same cluster after the swap.

Now we address currently satisfied constraints involving points outside the swap set.

Any of these constraints must be a cannot-link, and the outside point involved in this

constraint must be in a third stream different from the streams that define the swap set.

This is because otherwise the outside point would be in the swap set, according to the

swap set definition. Since the swap operation never assigns the cluster label of the third

stream to any point in the swap set, this cannot-link remains satisfied. Consider point 3

in Figure 3.2 as an illustrative example.

3.3.5. Finding a New Partition

The swap operation assures the set of satisfied constraints is expanded (or remained the

same), but it does not say anything about the objective function. It is possible that the

objective function is not decreased after the swap. In other words, the swap operation

gives us a way to generate a new and valid partition, but the partition might not be better

than the current one, given the objective function.

To make sure the objective function is also strictly decreased, I only do a swap oper-

ation that does strictly decrease the objective function. To find such a swap operation,

101

Algorithm 3: FindNewPartition

Input : Πt−1: a K-partition of N points; Ct−1: constraints satisfied by Πt−1; f :
objective function to be minimized.

Output: Πt: A new K-partition that also satisfies Ct−1 and with f(Πt) ≤ f(Πt−1).

1 fbest ← f(Πt−1);
2 Πt ← Πt−1;
3 while fbest == f(Πt−1) && not all the points p1, · · · , pN are traversed do
4 Pick pn at random, without replacement. Suppose pn is in stream Sk.;
5 for l← 1, · · · , K; l 6= k do
6 Find the swap set of pn between Sk and Sl in Πt−1 according to Ct−1; Do

swap to get a new clustering Πs and its centroids.;
7 if f(Πs) < fbest then
8 fbest ← f(Πs);
9 Πt ← Πs;

10 end
11 end
12 end
13 return Πt;

I randomly traverse all the points and try all their swap operations (i.e. try changing

streams for each pitch estimate). I stop the traversal when we find any swap operation

that decreases the objective function and return the new partition after the swap. If I

cannot find such a swap operation after traversing all the points, then there is no new

partition that strictly decreases the objective function and also satisfies the currently sat-

isfied constraints. In this case, I return the current partition and Algorithm 2 terminates.

This subroutine is described in Algorithm 3.

Figure 3.3 illustrates the process of Algorithm 2 from the perspective of solution

spaces. The algorithm starts with the initial constraints C0 and partition Π0, where the

solution space under C0 is S0. Then it updates to a new partition Π1 in S0 which decreases

the objective function f in Equation 3.1. After adding all the new constraints that Π1

102

Figure 3.3. An illustration of Algorithm 2. Ellipses represent solution
spaces under constraints in different iterations. Points represent cluster-
ings. Arrows show how clusterings are updated to decrease the objective
function.

satisfies, the set of satisfied constraints is expanded from C0 to C1, and the solution space

is shrunk to S1. Then, a new clustering Π2 is updated in S1, but this time there is no

new constraint satisfied. Therefore, C2 = C1 and S2 = S1. This iteration terminates in

Π′ and C ′, where Π′ is a local minimum of f in the solution space S ′ under C ′. S is the

solution space under all the constraints C, and Π is its optimal solution. It is noted that

if the constraints are inconsistent, S will be empty.

3.3.6. Algorithm Analysis

Algorithm 2 always terminates, possibly to some local optimum, because the space of

feasible partitions is finite and in every iteration the new partition found by “FindNew-

Partition” strictly decreases the objective function. The only time that the objective

function does not strictly decrease is when the newly found partition is actually the old

one, which causes Algorithm 2 to terminate.

103

In each iteration of the proposed algorithm, the space of feasible partitions, given the

satisfied constraints, is shrunk. Take the multi-pitch streaming problem as an example.

Suppose there are K monophonic sources, T time frames. In the worst case the total

number of pitches N equals to KT , then the size of the solution space without any

constraint is KKT . After imposing the initial constraints (all cannot-links) C0, the space

is shrunk to about (K!)T . This is because, each time frame has K! distinct assignments

of K pitch estimates to K streams.

After imposing all the constraints C (assuming they are consistent), suppose the typ-

ical number of pitch estimates in a must-link group (a group of pitches connected by

must-links) is M , then there are in total about KT/M must-link groups. Suppose also

that each must-link group is involved in a K-clique with cannot-link edges (each note is

overlapped by K − 1 other notes, which can be common). Then the solution space is

further reduced to (K!)
KT
MK = (K!)T/M . A typical value of M is 20 (i.e. a must-link group

spans 20 frames). With the constraints expanded, not only more domain knowledge is in-

corporated to refine the clustering, the shrunk space also eliminates a lot of local minima

of the objective function, where Algorithm 2 can be trapped.

The worst case running time of each iteration of Algorithm 2 is O(KN2), in terms of

the number of all points N and the number of clusters K. This is because in Algorithm

3, there are at most NK nested loops from Line 6 to Line 11. Line 6, 7 and 9 all cost

O(N) operations in the worst case (when the size of the swap set is O(N)). In most

cases, however, the swap set is much smaller than N . Taking the multi-pitch streaming

problem as an example, the size of a swap set typically does not increase with the length

of the music and the number of sources. This is because breaks between notes (or words)

104

naturally bound the number of pitch estimates that must be considered in a swap set to

a constant. In this case, each iteration of Algorithm 2 costs O(KN).

How long then, does Algorithm 2 take in practice? In my experiments, a typical four-

part Bach chorale (25 seconds long) from the Bach10 dataset in Section 3.5 has about

9,000 pitch estimates and 15,000 constraints. The algorithm takes about 300 iterations to

terminate from pitch-order initialization. This requires about 11 minutes on one core of

a 4-core 2.67GHz CPU). Assuming random initialization of the partition, the algorithm

requires 2,800 iterations to terminate (43 minutes on the same computer). In practice,

one can terminate the algorithm earlier, if the partition is already good enough.

3.4. Timbre Features

The constrained clustering approach described in this work depends on a clustering

objective function which, in turn, depends on a timbre representation for the pitch es-

timates. While there are a number of approaches to representing timbre [71, 9], our

problem formulation requires a simple approach that can be calculated from a multi-

source mixture for pitch estimate in a single time frame, where time frames are on the

order of 50 milliseconds in length. Here, I describe two previously-used timbre repre-

sentations: harmonic structure and mel-frequency cepstral coefficients (MFCCs). I then

propose a new representation: the uniform discrete cepstrum (UDC).

3.4.1. Harmonic Structure

This approach was previously used with success in [35]. It is defined as a vector of relative

logarithmic amplitudes of the harmonics of a pitch estimate. The harmonics are at integer

105

multiples of the pitch. I use the first 50 harmonics to create the timbre vector ti. I choose

this dimensionality because most instruments have less than 50 prominent harmonics. For

each harmonic, I use the peak-finder from [35] to see if there is a significant peak within

a musical quarter-tone. If no peak is associated, the magnitude of the harmonic is set to

0dB, else it is set to the value of the nearest peak. Then, the representation is normalized.

This is a simple, clear baseline representation. Note that the assumptions here are that

it will not be overly impacted by overlapping harmonics from different sources, and that

the within-source variation in harmonic structure will be less than the between-source

difference.

3.4.2. Mel-frequency Cepstral Coefficients (MFCC)

MFCCs have been widely used to represent the timbre of speech signals in many problems,

including speech recognition, speaker identification, etc. To calculate an MFCC feature

vector for an audio frame, the magnitude spectrum of the frame is first mapped onto the

Mel-frequency scale to better approximate the frequency resolution of the human ear:

(3.2) mel(f) =

 3f/200 if f ≤ 1000Hz

15 + ln(f/1000)/0.0688 if f > 1000Hz

Then, the typical steps used in creating an ordinary cepstrum (see Section 3.4.3) are

applied. In this work, I use Dan Ellis’s implementation [38], with a 40-band Mel filter

bank.

To calculate the MFCC feature for an individual pitch estimate, we first need to

separate its magnitude spectrum from the mixture. I do so using a simple harmonic

106

masking approach [31]. Recall that I assume a pitch estimate is associated with a single

source. If there are K pitch estimates in the current time-frame, then each frequency

bin in the spectrum is a harmonic of between 0 and K pitch estimates. Call this value

the harmonic count, hc. For nonharmonic bins (hc = 0) the mixture energy is evenly

distributed to all concurrent pitches. For a non-overlapping harmonic bin (hc = 1), the

mixture energy is solely assigned to a single source. For an overlapping harmonic bin

(hc > 1), the mixture energy is distributed among the pitch estimates it is a harmonic

of. Here, the proportion of energy assigned to a pitch estimate decreases as the harmonic

index increases. If the bin is the 10th harmonic of pitch p and the 2nd of pitch q, q will

receive more energy. This distribution is in inverse proportion to the square of harmonic

indices. It is equivalent to assuming that harmonic sources concentrate their energy in

the lower partials, a reasonable assumption for many sources.

3.4.3. Uniform Discrete Cepstrum

I have described an approach to building a cepstral representation of the pitch timbre from

a mixture: separate using a harmonic mask, then calculate the MFCCs. I now describe

an alternate approach to calculating a cepstral representation only from points in the

mixture spectrum that are likely to come from a single source, without the requirement

of separation. I name this representation as Uniform Discrete Cepstrum (UDC).

Essentially, UDC is approximately equivalent to taking the discrete cosine transform

(DCT) of a sparse log-amplitude spectrum. The sparse spectrum takes values of the

mixture spectrum at the frequency bins that are likely to come from the source, and zeros

everywhere else. For a harmonic source in this paper, these frequency bins correspond

107

to the harmonics of its pitch. Although the calculation of UDC is simple, its derivation

and relation to other cepstral representations is not that apparent. I describe it in the

following section.

3.4.4. Derivation of UDC

I first describe the basic concept of a cepstrum. I then describe the ordinary cepstrum

and the discrete cepstrum proposed in [47], from which UDC is derived.

The concept of a cepstrum is to approximate (up to a scale) a log-amplitude spectrum

a(f) by a weighted sum of p sinusoids

(3.3) a(f) ≈ c0 +
√

2

p−1∑
i=1

ci cos(2πif),

where the weights c = [c0, c1, · · · , cp−1]T form a cepstrum of order p; f is the normalized

frequency (Hz divided by the sampling rate). A common approximation criterion is to

minimize the Euclidean distance between both sides of Eq. (3.3), which leads to the least

square solution.

The calculation of the ordinary cepstrum (OC) assumes that the log-amplitude spec-

trum a(f) is observable at all frequency bins of a Fourier analysis. Suppose there are N

bins and their normalized frequencies and log-amplitudes are f1, · · · , fN and a1, · · · , aN ,

an ordinary cepstrum of order p is the first p coefficients of a DCT of the spectrum,

equivalent to the least square solution of Eq. (3.3) from the whole spectrum:

(3.4) coc = (MTM)−1MTa = MTa,

108

where a = [a1, · · · , aN]T and

(3.5) M =

1
√

2 cos(2π1f1) · · ·
√

2 cos(2π(p− 1)f1)

...
...

...
...

1
√

2 cos(2π1fN) · · ·
√

2 cos(2π(p− 1)fN)

 .

The second equality in Eq. (3.4) comes from the fact that the columns of M are orthogonal

and MTM is an identity matrix. M contain the first p columns of a DCT matrix.

The calculation of the discrete cepstrum1 [47], however, does not require observing

all the frequency bins of the spectrum. It can be calculated from a sparse, possibly

non-uniform, set of discrete spectral points. Suppose there are L observable frequencies

f̂1, · · · , f̂L, which form a subset of all the frequency bins f1, · · · , fN 2; and their corre-

sponding spectral log-amplitudes are â1, · · · , âL. Then the discrete cepstrum of order p

is the least square solution of Eq. (3.3) at these observable frequencies3:

(3.6) cdc = (M̂TM̂)−1M̂T â,

where â = [â1, · · · , âL]T and

(3.7) M̂ =

1
√

2 cos(2π1f̂1) · · ·
√

2 cos(2π(p− 1)f̂1)

...
...

...
...

1
√

2 cos(2π1f̂L) · · ·
√

2 cos(2π(p− 1)f̂L)

 .

1Its name is confusing since, “discrete” often refers to the implementation in the digital world, such as
discrete cosine transform. Here, however, “discrete” refers to the fact that a discrete cepstrum can be
calculated from a number of isolated analysis frequencies in a spectrum.
2In fact, the observable frequencies need not to be a subset of frequency bins in Fourier analysis. They
can be frequencies in between the bins.
3Note there is a slight and indifferent difference between Eq. (3.3) and the formulation in [47] on the
coefficients of sinusoids

109

Compared with coc, cdc has the advantage that it can be calculated from the mixture

spectrum directly, from the spectral points that are likely to belong to the source. How-

ever, I found that cdc calculated from different spectra of the same source are not similar

to each other. This prevents it being used as a timbre feature of sources. In fact, cdc

was only used for the purpose of spectral envelope reconstruction when it was proposed

in [47]. It was never used as a timbre feature for statistical comparisons. I explain this

in the following.

For two spectra a(1) and a(2) of the same source, their spectral envelopes are often

similar due to their similar timbre. Their spectra are two instantiations of their spectral

envelopes. Therefore, their coc’s are also similar as they are least square solutions to

approximate their respective full spectra.

However, cdc is the least square solution to only approximate the L observable fre-

quencies, that is, the reconstructed spectral envelope from cdc by Eq. (3.3) is very close

to the original spectrum at these L frequencies, but can be arbitrary at other frequencies.

The observable frequencies of the two spectra a(1) and a(2) are often quite different in

their respective mixture spectra. This makes their cdc’s be quite different too, since if

they were similar, their reconstructed spectral envelopes using Eq. (3.3) would also be

similar at all frequencies. But this is unlikely, as the reconstructed spectral envelopes at

the non-observable frequencies are arbitrary. There is no control at all for these values.

To address this problem, I define the Universal Discrete Cepstrum (UDC) as

(3.8) cudc = M̂T â = MT ã,

110

where ã is a sparse log-amplitude spectrum of the same dimensionality with a, but with

nonzero values only at the L observable frequencies. The second equality comes from the

fact that M̂ in Eq. (3.7) is a sub-matrix (a subset of rows) of M in Eq. (3.5) at the L

observable frequency bins.

Now, examining Eq. (3.4), cudc can be viewed as an ordinary cepstrum calculated from

the sparse spectrum ã. Remember that an ordinary cepstrum is the least square solution

to reconstruct the spectral envelope. This means the reconstructed spectral envelope from

cudc using Eq. (3.3) has to be close to ã not only at the L observable frequencies, but

also at those non-observable frequencies, which take zero values. Being close to those zero

log-amplitudes sounds useless, but that actually serves as a regularizer of cudc to prevent

its reconstructed spectral envelope overfitting the observable frequencies.

For the two spectra a(1) and a(2), they have many common non-observable frequencies.

Therefore, their regularizers are very similar. In other words, although the observable

frequencies are different, ã(1) and ã(2) are not that different, and their cudc’s will not be

that different either.

From another perspective, the difference between cudc and cdc is that the data-dependent

transformation (M̂TM̂)−1 is removed. It is noted that the columns of M̂ are not orthogo-

nal as those of M , and M̂TM̂ is not an identity matrix either. Multiplying by (M̂TM̂)−1

is actually performing a rotation that is dependent on the observable frequencies. Since

cudc’s of a(1) and a(2) are similar, their cdc’s will not be similar.

111

3.5. Experiments

In this section, I test the proposed multi-pitch streaming algorithm on polyphonic

music recordings. Through the experiments, I want to answer the following questions:

(1) Which timbre representation (harmonic structure, MFCC or UDC) is best for

streaming?

(2) How does the proposed algorithm perform on music recordings with different

polyphony?

(3) What is the effect of different input MPE systems on streaming performance?

(4) Which components (e.g. initialization, timbre objective, locality constraints) of

the proposed algorithm significantly affect the streaming results?

3.5.1. Dataset

I use the Bach10 dataset4, as described in Section 2.6.1. As a reminder, this dataset

consists of real musical instrumental performances of ten pieces of J.S. Bach four-part

chorales. Each piece is about thirty seconds long and was performed by a quartet of

instruments: violin (Track 1), clarinet (Track 2), tenor saxophone (Track 3) and bassoon

(Track 4). Each musician’s part was recorded in isolation while the musician listened to

the others through headphones. The sampling rate was 44.1kHz. The ground-truth pitch

trajectories were created using the robust single pitch detection algorithm YIN[24] on the

isolated instrument recordings, followed by manual corrections where necessary.

4Download at http://cs.northwestern.edu/~zdu459/resource/Resources.html.

http://cs.northwestern.edu/~zdu459/resource/Resources.html

112

For each of the ten pieces, I created single-channel recordings of six duets, four trios and

one quartet, by mixing the individual tracks with different combinations. This provided

me in total 110 pieces of music with different polyphony.

3.5.2. Input Multi-pitch Estimates

As stated before, the proposed multi-pitch streaming algorithm can take frame-level pitch

estimates from any MPE algorithm as inputs. Here I test it using three MPE algorithms.

I provide the number of instruments in the mixture to these MPE algorithms and let

them estimate the instantaneous polyphony in each frame.

The first one is our previous work [33], denoted by “Duan10”. It is a general MPE

algorithm based on probabilistic modeling of spectral peaks and non-peak regions of the

amplitude spectrum.

The second one is [70], denoted by “Klapuri06”. I use Klapuri’s original implemen-

tation and suggested parameters. This is an iterative spectral subtraction approach. At

each iteration, a pitch is estimated according to a salience function and its harmonics are

subtracted from the mixture spectrum.

The third one is [93], denoted by “Pertusa08”. I use Pertusa’s original implementation

and suggested parameters. This is a rule-based algorithm. In each time frame, it first

selects a set of pitch candidates from spectral peaks, then all their possible combinations

are generated. The best combination is chosen by applying a set of rules, taking into

account its harmonic amplitudes and spectral smoothness.

113

Since pitch estimates of MPE algorithms contain errors and these errors will be prop-

agated to the streaming results, I also use ground-truth pitches as inputs and let the

proposed approach to cluster these error-free pitches into trajectories.

3.5.3. Parameter Settings

For all the MPE algorithms, the audio mixture is segmented into frames with 46ms-long

frames with 10ms hope size. The pitch range of Duan10 and Klapuri08 is set to C2-B6

(65Hz-1976Hz). The pitch range of Pertusa08 is set as-is.

In imposing the must-links, I set the time and frequency difference thresholds ∆t and

∆f to 10ms and 0.3 semitones, respectively. 10ms is the time difference between adjacent

frames, and 0.3 semitones correspond to the range that the pitch often fluctuates within a

note. These thresholds are quite conservative to assure that most must-links are correct.

After clustering, I perform an additional postprocessing step. I merge two adjacent

must-link groups of the same instrument if their time gap (the time interval between the

offset of the previous group and the onset of the latter group) is less than 100ms. I also

remove must-link groups that are shorter than 100ms. I choose this threshold because

100ms is the length of a 32nd note in a piece of music with a moderate tempo of 75 beats

per minute. This step fills some small holes and removes some short notes in the pitch

trajectories that are not musically meaningful.

3.5.4. Evaluation Measure

Given a polyphonic music with K monophonic instruments, the proposed multi-pitch

streaming algorithm streams pitch estimates in individual frames into K pitch trajectories,

114

each of which corresponds to an instrument. To evaluate the streaming results, I first

find the bijection between the K ground-truth pitch trajectories and the K estimated

trajectories. In the experiment, I choose the bijection that gives us the best overall multi-

pitch streaming accuracy. This accuracy is defined as follows. For each estimated pitch

trajectory, I call a pitch estimate in a frame correct if it deviates less than 3% in Hz (a

quarter-tone) from the pitch in the same frame and in the matched ground-truth pitch

trajectory. This threshold is in accordance with the standard tolerance used in measuring

correctness of pitch estimation for music [70]. Then the overall multi-pitch estimation

and streaming accuracy is defined as:

(3.9) Acc =
TP

TP + FP + FN
,

where TP (true positives) is the number of correctly estimated and streamed pitches, FP

(false positives) is the number of pitches that are present in some estimated trajectory

but do not belong to its matched ground-truth trajectory, and FN (false negatives) is the

number of pitches that belong to some ground-truth trajectory but are not present in its

matched estimated trajectory.

3.5.5. Comparison of Timbre Features

To investigate the effects of timbre features on the multi-pitch streaming performance,

I run the proposed approach on the ground-truth pitch inputs, comparing system per-

formance using three timbre representations: 50-d harmonic structure calculated from

the mixture spectrum directly, 21-d MFCC feature calculated from separated signal of

each pitch estimate using harmonic masking, and 21-d UDC feature calculated from the

115

mixture spectrum directly. To remove the effect caused by the pitch height arrangement

of different tracks, I initialize all partitions randomly. Figure 3.4 shows the results.

Figure 3.4. Comparison of multi-pitch streaming accuracy of the proposed
approach using three kinds of timbre features: 50-d harmonic structure
(dark gray), 21-d MFCC (light gray) and 21-d UDC (white). Input pitches
are ground-truth pitches without track information. Clusterings are ran-
domly initialized to remove the pitch order information.

In this and all the following box plots figures, the lower and upper lines of each box

show 25th and 75th percentiles of the sample. The line in the middle of each box is the

sample median. The lines extending above and below each box show the extent of the

rest of the samples, excluding outliers. Outliers are defined as points over 1.5 times the

interquartile range from the sample median and are shown as crosses.

For all the polyphonies, harmonic structure and UDC work well, and outperform

MFCC significantly. The validity of harmonic structure for musical instruments has been

validated in our previous work [35, 28]. It is interesting to see that UDC works even

better, given the dimensionality of UDC is smaller. A nonparametric sign test shows that

116

the median accuracy achieved by UDC outperforms that by harmonic structure when

polyphony is two or three. Although the effect is small, it is statistically significant

(p < 10−5).

On the other hand, MFCC calculated from separated spectra achieves much worse

results. This can be credited to two things. First, compared to harmonic structure or

UDC that only encode information at harmonics, MFCC is not that discriminative for

harmonic instruments. Second, the source separation step required to use MFCC (see

Section 3.4.2) may further deteriorate the performance of MFCC.

3.5.6. The Effect of the Input Multi-pitch Estimation

Given that harmonic structure and UDC performed similarly in the timbre feature eval-

uation, I test performance of our system in combination with several existing MPE ap-

proaches using the 50-d harmonic structure vector as the timbre feature. Figure 3.5 shows

the box plots of the overall multi-pitch streaming accuracies achieved.

Note MPE accuracy is defined as the overall multi-pitch streaming accuracy except

that a pitch estimate is called correct only according to the time and frequency criteria,

ignoring the trajectory information. Therefore, the average overall multi-pitch streaming

accuracy cannot be higher than the average MPE accuracy.

Comparing the accuracies achieved with the three MPE inputs, we see that the one

taking Duan10 as inputs are much better than those taking Klapuri06 and Pertusa08

inputs. This is in accordance with their average input MPE accuracies. More accurate

MPE inputs lead to more accurate multi-pitch streaming results. The median accuracy

achieved by the best multi-pitch streaming configuration (using Duan10 as input) is about

117

Figure 3.5. Boxplots of overall multi-pitch streaming accuracies achieved
by the proposed method on the Bach chorale music pieces, taking input
pitch estimates provided by three MPE algorithms: Duan10 (dark gray),
Klapuri06 (light gray) and Pertusa08 (white). Each box of polyphony 2,
3 and 4 represents 60, 40 and 10 data points, respectively. The lines with
circles show the average input MPE accuracy of the three MPE algorithms.

83% for duets, 72% for trios and 53% for quartets. This is promising, considering the

difficulty of the task. The only information provided to the MPE algorithm and the

proposed streaming algorithm about these music recordings is the number of instruments

in the mixture.

To see the errors attributed only to the proposed streaming algorithm, consider Figure

3.5 where the pitch inputs are ground-truth pitches and the algorithm starts from a

random clustering. We can see that the final clustering is very accurate for all polyphony

when the pitch estimates are accurate.

118

3.5.7. Individual Analysis of System Components

As described in Section 3.2, the proposed approach utilizes two kinds of information to

cluster pitch estimates. Timbre is utilized through the objective function; while pitch

locality information is utilized through the constraints. I claimed that both are essential

to achieve good results. In addition, I claimed that the pitch-order initialization is more

informative than a random initialization in Section 3.3.1.

In this experiment, I analyze the effect caused by each individual aspect and their com-

binations. More specifically, I run the clustering algorithm in the following configurations,

with the 50-d harmonic structure as the timbre feature:

(1) Timbre: from random initialization, run the algorithm to only optimize the tim-

bre objective function; equivalent to K-means algorithm.

(2) Locality : from random initialization, run the algorithm to only satisfy more lo-

cality constraints.

(3) T+L: from random initialization, run the full version of the proposed algorithm

to optimize the timbre objective as well as satisfy more locality constraints.

(4) Order : clustering by only pitch-order initialization.

(5) O+T : Configuration 1 with pitch-order initialization.

(6) O+L: Configuration 2 with pitch-order initialization.

(7) O+T+L: Configuration 3 with pitch-order initialization.

Figure 3.6 shows box plots of the multi-pitch streaming accuracy of these configura-

tions on the ten quartets. It can be seen that the pitch-order initialization itself (Order)

does not provide a satisfying clustering, even though the pitch trajectories of the Bach

119

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Tim
br

e

Lo
ca

lity T+L
Ord

er
O+T O+L

O+T
+L

Figure 3.6. Box plots of multi-pitch streaming accuracies of the proposed
approach with different system configurations, taking the same input pitch
estimates from Duan10. Each box contains ten data points corresponding
to the ten quartets. The horizontal line is the average input MPE accuracy.

chorales rarely interweave. This is due to the polyphony estimation and pitch estima-

tion errors. Only using the locality constraints information, no matter what initialization

(Locality and O+L), achieves the worst clustering. Only using the timbre information

(Timbre and O+T) achieves better clustering but still non-satisfying. Utilizing both tim-

bre and locality information (T+L and O+T+L) achieves significantly better clustering

than only using either one of them. This supports our claim that both timbre and locality

are essential for good clustering. In this case, the pitch-order initialization does not help

the clustering much, as a nonparametric paired sign test favors the null hypothesis that

the median difference between T+L and O+T+L is 0 (p = 0.11). However, the pitch-

order initialization does make the algorithm converge faster, because the final clustering

is “closer” (requires less swaps) from the pitch-order initialization than from a random

initialization, since the pitch trajectories of the music pieces do not often interweave. For

120

example, the number of iterations for Algorithm 2 to terminate on the first quartet is

reduced from 2781 to 313.

3.6. Conclusions

In this chapter I proposed a constrained-clustering approach for multi-pitch streaming

of harmonic sound sources. Given pitch estimates in individual time frames provided

by some multi-pitch estimation (MPE) algorithm, the proposed approach streams pitch

estimates of the same source into a long and discontinuous pitch trajectory. This approach

is unsupervised, i.e. it does not require pre-training source models on isolated recordings.

It is general and can be applied to different kinds of harmonic sounds (e.g. musical

instruments, speech, etc.). It is also highly compatible and can take the outputs of any

MPE methods as inputs.

I also proposed a new variant of cepstrum called uniform discrete cepstrum (UDC)

to represent the timbre of sound sources. UDC can be calculated from the mixture spec-

trum directly. Experiments show that UDC achieves better performance than ordinary

cepstrum features such as MFCC, which requires source separation before feature calcu-

lation.

I evaluated the proposed approach on both polyphonic music and multi-talker speech

datasets. I also compared it with several supervised and unsupervised state-of-the-art

methods, which were specially designed for either music or speech. The proposed approach

achieves better performance than the comparison methods on both datasets.

For future work, I would like to improve the problem formulation. Currently the

constraints are binary. It may be beneficial to design soft constraints so that many existing

121

nonlinear optimization algorithms can be used. In addition, I would like to incorporate

higher-level domain knowledge such as musicological information into the objective and

constraints. I also would like to design new features and apply the proposed algorithm on

more kinds of harmonic sounds and explore its broader applications. Finally, designing a

method that can jointly estimate the pitches and the streams that they belong to would

be an important direction to pursue to solve the multi-pitch analysis problem.

122

CHAPTER 4

Multi-pitch Estimation and Streaming of Multi-talker Speech

The proposed MPE and MPS methods in Chapter 2 and Chapter 3 can be applied to

polyphonic audio other than music. In this chapter, I perform experiments on multi-talker

speech. Estimating the pitch stream for each underlying talker in a multi-talker speech

mixture would be beneficial for speech recognition, speaker identification, prosody and

emotion analysis, and speech segregation.

In the following, I will first describe the main differences between music and speech

signals in Section 4.1, which will affect the parameter settings in the proposed MPE and

MPS methods. Then I will present the experiments in MPE and MPS in Section 4.2 and

4.3, respectively.

4.1. Differences between Music and Speech

The music data I deal with in this dissertation is polyphonic music audio composed

of harmonic sound sources. No inharmonic sounds such as percussive instruments are

involved. Speech data, however, are quasi-harmonic. There are both harmonic sounds

(like vowels) and inharmonic sounds (like fricatives). In a multi-talker speech mixture,

each audio frame can be a mixture of both harmonic signals and inharmonic signals. This

adds some difficulties to the MPE problem, as the inharmonic signals are essentially noise

that interfere the harmonic signals.

123

In addition, the pitch contours of speech are less stable than those in music. For music,

most notes have a relatively constant pitch. Even if a note has vibrato, its pitch only

fluctuates within a small frequency range. Speech signals, however, often have gliding

pitch contours even within a vowel. In my observation, these gliding pitches can change

by up to 5 semitones within 60 ms. This property affects several parameter settings of

the proposed MPE and MPS systems. First, the frame length of the MPE system is

changed from 46ms for music to 32ms for speech. Second, the smoothing window size in

the postprocessing step of the MPE system (Section 2.4) is changed from 17 frames to 3

frames. Third, the frequency threshold ∆f to impose must-link constraints between pitch

estimates (Section 3.2.2) is changed from 0.3 semitones to 1 semitone.

Furthermore, the pitch contours of concurrent talkers can often interweave if the talkers

are of the same gender. This is not that frequent in music even if two parts are played by

the same kind of instrument. The interweaving properties make MPS more difficult.

Finally, the timbre of a talker is harder to model than the timbre of a musical instru-

ment. As described in Section 3.4, the timbre of a sound source can be mostly captured by

the frequency response of its resonance filter. This response corresponds to the spectral

envelope, and can be approximated by different timbre features. For a musical instru-

ment, the shape of the resonance filter (i.e. the instrument body) is fixed, hence the

spectral envelope is relatively stable. For a human talker, the shape of the resonance

filter (i.e. the vocal tract) varies significantly when different vowels are pronounced. This

makes the spectral envelope not that stable and harder to approximate. In Section 3.5.5,

I have shown that both the harmonic structure and the UDC feature can well represent

the timbre of a musical instrument. For speech, however, harmonic structure captures too

124

many details of the spectrum and cannot be robustly used as the timbre feature. UDC,

on the other hand, will be shown to work well as the timbre feature in Section 4.3.6.

There are also some properties in speech that make multi-pitch analysis easier than in

music. The most important one regards the overlapping harmonic issue (Section 2.1.1).

Concurrent sound sources are intentionally made harmonic to each other in music compo-

sition, which leads to much overlap between harmonics from different sources. Concurrent

talkers, on the other hand, have much less dependence between each other and therefore

harmonics from different talkers typically do not overlap in concurrent speech.

4.2. Multi-pitch Estimation Experiments

In this section, I test the proposed MPE method in Chapter 2 on a multi-talker speech

dataset.

4.2.1. Dataset

The dataset I use is the Pitch-Tracking Database from Graz University of Technology

(PTDB-TUG) [94]. This database consists of recordings of twenty native English speak-

ers (ten male and ten female) from different home countries (USA, Canada, England, Ire-

land and South Africa), reading phonetically rich sentences from the TIMIT corpus [50].

The TIMIT corpus consists of 450 phonetically-compact sentences and 1890 phonetically-

diverse sentences. Each sentence was read by one female and one male subject. In total

there are 4680 recorded utterances, 900 of which are of phonetically-compact sentences

and 3780 are of phonetically-diverse sentences. Each utterance has about four seconds of

125

voice and a couple of seconds of silence before and after. All the recordings were recorded

in 48kHz.

Among the 3780 phonetically-diverse utterances from all twenty subjects, I selected

five male and five female subjects to form the test set. This accounts for 1890 utterances. I

randomly mixed these utterances, ensuring all talkers has equal root-mean-squared ampli-

tude, to generate each multi-talker speech mixture. I considered four conditions according

to the number of talkers and their gender relations: two-talker different gender (DG), two-

talker same gender (SG), three-talker DG and three talker SG. I generated 100 mixtures

for each condition, totalling 400 test mixtures.

The database provides a ground-truth pitch track for each utterance. Ground-truth

pitch estimates were generated from individual talkers, prior to mixing using RAPT [117],

a well known method to find pitch in voice on the filtered laryngograph signal from the

utterance. The frame length and hop size were 32ms and 10ms, respectively. However,

I found that these ground-truth pitch tracks contain some errors due to noise in the

laryngograph signal. Therefore, I generated and used our own ground-truth pitch tracks

with Praat [7] on the utterances1, using the same frame length and hop size. I found that

about 85% of the Praat-generated ground-truth pitches agree with the RAPT-generated

ground-truth pitches. The pitch range of the utterances is between 65Hz to 370Hz.

4.2.2. Evaluation Measure

I use the multi-pitch estimation accuracy described in Section 2.6.2 to measure the pitch

estimation results. Unlike music, the frequency deviation threshold to determine whether

1Downloadable at http://cs.northwestern.edu/~zdu459/resource/Resources.html

http://cs.northwestern.edu/~zdu459/resource/Resources.html

126

a pitch estimate is a good match to a ground-truth pitch is changed from 3% of the pitch

frequency in Hz (a quarter tone) to 10%. This is a commonly used criterion in multi-pitch

analysis literature for speech data [140, 64, 136]. To measure polyphony estimation, I

use the Mean Square Error (MSE) described in Section 2.6.2.

4.2.3. Comparison Method

I compare the proposed MPE method with two state-of-the-art multi-pitch analysis meth-

ods specifically designed for speech. The first one is [140], denoted by “Wu03”. I use

their original implementation and suggested parameters. This algorithm uses a hidden

Markov model (HMM) to model both the change in instantaneous polyphony and pitch

values. It can estimate pitches of up to two simultaneous talkers.

The second one is [64], denoted by “Jin11”. I use their original implementation and

suggested parameters. This algorithm extends [140] to reverberant environments, and

can also estimate pitches of up to two simultaneous talkers.

4.2.4. Parameter Settings

For the proposed method, I trained the likelihood models with 500 multi-talker mixtures

using phonetically-compact utterances of the other five male and five female subjects.

Similar to the test set, I randomly mixed these utterances with equal RMS levels to

generate in total 400 two-talker and three-talker mixtures in both different-gender (DG)

and same-gender (SG) conditions. I also included 100 single-talker utterances. These 500

training recordings were used as a whole to train the MPE model. It is noted that the

127

training set and the test set do not overlap in either utterances, subjects, sentences or

phonetic vocabularies.

For all comparison methods, the audio mixtures were segmented into frames with

length of 32ms and hop size of 10ms. The pitch range was set to 65Hz-370Hz. The

number of talkers in each audio mixture was provided but the MPE methods needed to

estimate the instantaneous polyphony in each frame.

4.2.5. Multi-pitch Estimation Results

Figure 4.1 shows the box plot comparisons of the three methods. It can be seen that

in the two-talker DG condition, the proposed method achieves comparable performance

with Wu03. This is supported by a nonparametric sign test with p = 0.92. In the two-

talker SG condition, the proposed method is slightly worse than Wu03, but the difference

is not statistically significant according to a nonparametric sign test at the significance

level of 0.05. In both two-talker DG and SG conditions, Wu03 and the proposed method

significantly outperform Jin11. This indicates that the proposed method, which can

deal with both music and speech, is comparable to one of the best state-of-the-art MPE

methods that are specifically designed for speech.

In addition, in the three-talker conditions, neither Wu03 nor Jin11 can work. They

are both designed to only deal with pitch estimation for up to two simultaneous talkers.

The proposed method, however, does not have this restriction. We can see that its

performance in the three-talker DG condition is almost comparable to that in the two-

talker SG condition, which indicates that adding another talker with the different gender

to a two-talker SG mixture does not significantly increase the difficulty for the proposed

128

Figure 4.1. Comparison of multi-pitch estimation accuracies of Wu03 (dark
gray), Jin11 (light gray) and the proposed method (white) on the multi-
talker speech dataset. Here, DG means each mixture contains talkers from
different genders. SG means each mixture contains talkers from only a
single gender.

method. In the three-talker SG condition, the performance is worse, but the median

accuracy is still around 50%. Note that pitch estimation by a random guess would achieve

an accuracy very close to 0%.

4.2.6. Polyphony Estimation Results

Table 4.1 shows the comparison of instantaneous polyphony estimation of the three meth-

ods on two-talker mixtures. The true polyphony of each frame can take three values: 0,

1 or 2. The Mean Square Error (MSE) of the estimated polyphony is calculated for each

true polyphony condition, as described in Section 2.6.2. Lower MSE indicates more accu-

rate polyphony estimation. It can be seen that Wu03 achieves the lowest error when the

true polyphony is 0 or 1, while the proposed method achieves the lowest error when the

129

Table 4.1. Mean Square Error (MSE) of instantaneous polyphony estima-
tion of three comparison methods on two-talker mixtures.

true polyphony Wu03 Jin11 Proposed

DG
0 0.051 0.099 0.091
1 0.190 0.307 0.287
2 0.878 0.941 0.673

SG
0 0.047 0.093 0.084
1 0.187 0.291 0.274
2 1.177 1.339 0.923

Table 4.2. Mean Square Error (MSE) of instantaneous polyphony estima-
tion of the proposed method on three-talker mixtures.

true polyphony DG SG
0 0.077 0.070
1 0.361 0.379
2 0.676 0.860
3 2.531 3.000

true polyphony is 2. Also, it can be seen that the MSEs in SG conditions are generally

higher than those in the DG condition. This suggests that polyphony estimation becomes

harder when the pitch ranges of simultaneous talkers overlap more.

Table 4.2 shows the MSE values of the proposed method on three-talker mixtures.

It can be seent that the MSEs are not significantly different from those in Table 4.1

when there are less than or equal to two simultaneous pitches. When there are three

simultaneous pitches, the MSE values are much higher, suggesting that the proposed

method tends to underestimate the polyphony.

130

4.3. Multi-pitch Streaming Experiments

We have now seen the results for multi-pitch estimation (MPE) on speech data. How

good, then, is multi-pitch streaming (MPS) on speech data. In this section, I test the

proposed MPS method in Chapter 3 on a multi-talker speech dataset.

4.3.1. Dataset

I use the same speech dataset in MPE experiments as described in Section 4.2.1.

4.3.2. Input Multi-pitch Estimates

The proposed MPS approach takes pitch estimates in individual frames from an MPE

approach as inputs. Here I run the proposed MPS approach with input pitch estimates

from the three MPE algorithms that I compared in the MPE experiments (Section 4.2.3):

Wu03 [140], Jin11 [64], and the proposed MPE algorithm denoted as Duan10. In some

experiments, I also use ground-truth pitches as inputs to show how well the proposed

streaming approach works with ideal inputs.

4.3.3. Parameter Settings

In imposing the must-link constraints (Section 3.2.2) on how to connect individual pitch

estimates to form streams, I set the time and frequency difference thresholds ∆t and ∆f

to 10ms and 1 semitone, respectively. The frequency threshold is larger than that used

for music (0.3 semitones), since speech utterances often have fast gliding pitch contours.

131

For the proposed clustering algorithm, I use the proposed UDC of order 21 as the

timbre feature. In Section 4.3.6 I compare its performance with two other features: 50-d

harmonic structure and 21-order MFCC.

4.3.4. Evaluation Measure

I use the multi-pitch estimation and streaming accuracy defined in Section 3.5.4 to evalu-

ate the MPS results. Similar to the MPE experiments, the frequency difference threshold

to judge if a pitch estimate is matched with a ground-truth pitch is set to 10% of the

ground-truth pitch frequency in Hz. This is larger than what is used for music, but is

commonly used in existing multi-pitch analysis methods [140, 64, 136] for speech.

4.3.5. Comparison Method

I compare the proposed approach with two state-of-the-art multi-pitch estimation and

streaming systems. The first one is a supervised method based on a factorial HMM [136],

denoted by “Wohlmayr11”. One HMM is used for each talker to estimate and stream the

talker’s pitches. The HMM parameters are trained on isolated training utterances. I use

their source code and provided gender-dependent models, which give the most supervi-

sion information that we can use. The gender information gives it a small information

advantage over our proposed method and the other comparison method.

The other method is an unsupervised method designed for cochannel speech separation

[61], denoted by “Hu12”. I use their source code and suggested parameters. This method

estimates a pitch trajectory for each talker to construct a binary time-frequency mask to

separate the mixture spectrogram. This method is built on the tandem algorithm [60].

132

Similar to the proposed approach, [61] also views the multi-pitch streaming problem as

a constrained clustering problem, although the formulations are different. Note that [61]

is only designed and tested for two-talker speech mixtures.

4.3.6. Comparison of Timbre Features

I first run the proposed approach with three kinds of timbre features on the ground-truth

pitch inputs: 50-d harmonic structure calculated from the mixture spectrum directly, 21-d

MFCC calculated from separated signal of each pitch estimate using harmonic masking,

and 21-d UDC calculated from the mixture spectrum directly.

Figure 4.2. Comparison of multi-pitch streaming accuracies of the proposed
approach using three kinds of timbre features: 50-d harmonic structure
(dark gray), 21-d MFCC (light gray) and 21-d UDC (white). Input pitches
are ground-truth pitches without track information.

The results are shown as boxplots in Figure 4.2. In three out of four conditions,

the two cepstral features both significantly outperform the harmonic structure feature,

133

supported by a paired sign test at the 5% significance level. In the two-talker DG condi-

tion, both MFCC and UDC achieve very good streaming accuracy where MFCC achieves

almost perfect results. However, when the conditions become harder, especially in the

SG conditions, UDC significantly outperforms MFCC. This is because the calculation of

MFCC requires source separation, which becomes less reliable when there is more overlap

between concurrent sources. In contrast, the calculation of UDC is performed directly

from points in the mixture spectrum that likely belong to a single source.

4.3.7. Overall Results

Figure 4.3 shows the overall comparison between Wohlmayr11, Hu12 and the proposed

approach with input from three MPE algorithms, using the 21-d UDC timbre feature.

It can be seen that the unsupervised methods (Hu12 and the proposed method with

different inputs) significantly outperform Wohlmayr11, which uses the gender information

in the mixture. It is noted, however, that Wohlmayr11 is designed to utilize supervision

information and its full strength can only be shown when a model is trained for each

talker in the mixture. The good results obtained by the proposed method illustrate both

its compatibility with different MPE algorithms and effectiveness when combined with

them to perform streaming.

In addition, the proposed multi-pitch streaming approach achieves comparable results

with the state-of-the-art method Hu12. In the two-talker DG condition, the best results

are obtained by Hu12, Proposed taking Duan10 and Wu03 as input. A nonparametric

paired sign test shows that differences between these systems are not statistically signif-

icant at the 5% significance level. Similarly, in the two-talker SG condition, Hu12 and

134

Figure 4.3. Comparison of multi-pitch streaming accuracies of 1)
Wohlmayr11, 2) Hu12, and the proposed approach taking inputs from 3)
Duan10, 4) Wu03 and 5) Jin11. Each box has 100 data points. The cir-
cled red lines above the boxes show the average accuracy of input pitch
estimates, prior to streaming.

Proposed taking Wu03 as input obtain the best results. Their difference is not statistically

significant. However, the proposed multi-pitch streaming approach is able to deal with

general harmonic sounds (as shown in Section 3.5) and speech mixtures with more than

two simultaneous talkers (as shown in the three-talker condition in Figure 4.3).

The errors caused by the proposed streaming approach (instead of the MPE algo-

rithms) can be read from the gap between the box medians and the average accuracy of

input pitch estimates. In the two-talker DG condition, this gap is fairly small, indicating

that the proposed streaming algorithm works well. In the two-talker SG condition, this

gap is significantly enlarged. This is because the pitch trajectories interweave with each

other, making many must-link constraints imposed in the streaming process incorrect.

The gap is further enlarged in the three-talker SG condition. One interesting thing to

135

notice is that there is no significant difference of the performance between two-talker

SG and three-talker DG conditions. This means that adding a talker with a different

gender to an existing two-talker SG mixture does not influence the pitch estimation and

streaming result much. The errors made by the proposed streaming approach can also

be seen in Figure 4.2, which compares clustering using different timbre features based on

ground-truth pitch estimates.

4.3.8. Individual Analysis of System Components

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Tim
br

e

Lo
ca

lity T+L
Ord

er
O+T O+L

O+T
+L

Figure 4.4. Box plots of multi-pitch streaming accuracies of the proposed
approach with different system configurations, taking the same input pitch
estimates from Duan10. Each box contains 100 data points corresponding to
the 100 two-talker DG excerpts. The horizontal line is the average multi-
pitch estimation accuracy from the best available multi-pitch estimator.
The accuracy of the input pitch estimation sets an upper bound of the
streaming accuracy.

I analyze the effectiveness of different system components, similar to Section 3.5.7.

Figure 4.4 shows box plots of the multi-pitch streaming accuracies of these configurations

136

on the 100 two-talker DG excerpts using the 21-d UDC feature. It can be seen that the

pitch order information (Order) does not provide results as good as in the music dataset.

This is expected, as the pitch activity of the two talkers often do not overlap in time

and the pitch order initialization would label almost all the pitches incorrectly to the first

cluster. Only using the locality information (Locality) or combining it with the pitch

order information (O+L) also does not achieve good results, which is also expected.

What I did not expect was the good performance from only using the timbre infor-

mation (Timbre) or its combination with pitch order (O+T). They achieve comparable

results to T+L and O+T+L. This indicates that the UDC timbre feature is good to

discriminate the two talkers, while the locality information does not help much.

4.4. Conclusions

In this chapter, I tested the proposed MPE and MPS methods on a multi-talker

speech dataset. I first summarized the different characteristics of speech data from music

data, which affect the parameter settings of the proposed methods. I then presented

experimental results on MPE and MPS individually.

Results on MPE experiments showed that the proposed MPE algorithm achieves com-

parable results on pitch estimation and polyphony estimation on two-talker mixtures, with

state-of-the-art methods that are specifically designed for speech. The proposed method

can also work for mixtures with more than two talkers while existing methods cannot.

Results on MPS experiments showed that the proposed MPS algorithm outperforms a

state-of-the-art supervised method and achieves comparable results with an unsupervised

137

method, on two-talker mixtures. The proposed method is also able to work on three-

talker mixtures, while existing methods cannot. Experiments also show the advances of

the proposed UDC feature over harmonic structure and MFCC on speech data.

It is noted that although multi-pitch analysis provides important information, it is

not sufficient to achieve source separation of multi-talker speech as for polyphonic music

composed of harmonic sources. This is due to the inharmonic sounds in speech. How to

model these sounds and combine them with multi-pitch analysis of the harmonic sounds

to achieve speech separation is still a challenging problem [61].

138

Part 2

Analyzing the Music Audio Scene with A

Written Score

The goal of my dissertation is to analyze a polyphonic music audio scene composed

of harmonic sources, i.e. finding the musical objects and separating their signals from

the mixture. One can then build on this analysis to further manipulate or interact with

the music audio. In the first part, I approached this goal through multi-pitch analysis

solely from audio. This approach does give us promising results on pitch estimation and

streaming, based on which preliminary separation can be obtained on some sources and

music. However, due to the extreme difficulty of the problem, source separation achieved

in this approach in general is not satisfying for audio manipulation purposes.

There exist a number of other source separation algorithms that do not need a score.

CASA-based [82, 128, 79, 35], spectral decomposition-based [133, 129, 12] and model-

based methods [107, 123, 4, 68] have been the three main categories of this research.

Again, due to the extreme difficulty of the problem, these methods usually only achieve

good results in some special cases with generalization to broader scenarios being unsuc-

cessful.

In many scenarios, the score of the music is available. One can utilize the score

information to help analyze the music audio. In the second part of my dissertation, I

propose algorithms to do score-informed source separation. There are two basic problems.

The first one is how to align (synchronize) the audio with the score (Chapter 5). Since the

audio and the score may be of different temporal dynamics, the score information cannot

be used without a good alignment. The second problem is how to separate the sound

sources given an audio-score alignment (Chapter 6). In Section 6.4, I will compare the

score-informed source separation results with the separation results achieved from the first

140

part of the dissertation. Results show that the score information does help significantly.

Finally, I propose two interesting applications of the proposed algorithms in Chapter 7.

141

CHAPTER 5

Audio-score Alignment

5.1. Introduction

Audio-score alignment is the problem of aligning (synchronizing) a piece of music audio

with its score. It belongs to a broader topic called Score Alignment, which is to align a

general musical performance (not necessarily audio) with its underlying score. In fact,

the score alignment research started from addressing MIDI performances [20, 122], and

in recent years gradually shifted to audio performances. Audio performances are much

harder to deal with, since they are not directly machine understandable as MIDI.

Audio-score alignment can be addressed offline or online. An offline algorithm can use

the whole performance of a music piece. The online version (also called Score Following)

cannot “look ahead” at future performance events when aligning the current event to the

score. While offline algorithms can only be used in offline applications, online algorithms

can be used in both offline and online scenarios, and even be made to work in real

time if they are fast enough. In my dissertation, I propose to address online audio-score

alignment, which will support broader applications of music audio scene analysis.

Besides its importance to the proposed MASA system, audio-score alignment has

a number of real-world applications. Offline algorithms have been used to synchronize

multiple modalities (video, audio, score, etc.) of music to build a digital library [118].

142

Online algorithms have been used to make an automatic accompaniment system, where

the system follows a solo performance and plays the rest parts of a band [101].

5.1.1. Related Work

Table 5.1 classifies existing algorithms on audio-score alignment. The rows classify them

according to the music they can be applied to, from easy to hard into monophonic,

single-instrument polyphonic (e.g. piano or guitar) and multi-instrument polyphonic (e.g.

ensemble). Single-instrument polyphonic music is in general easier to deal with than multi-

instrument polyphonic music, because the timbre complexity of the former is usually much

lower than the latter. Columns classify them into offline and online. Since I am proposing

an online algorithm, I will only review online algorithms in the following.

Table 5.1. Prior work on audio-score alignment.

Offline Online
Monophonic [10, 100] [96, 56, 89, 101]

Polyphonic, Single-instrument [102, 65] [26, 16, 17]
Polyphonic, Multi-instrument [91, 62, 44] [55, 87, 86]

References [96, 56, 89, 101] are online audio-score alignment algorithms, but only for

monophonic audio performances. They cannot be applied to polyphonic performances,

due to the intrinsic differences between monophonic and polyphonic music as stated in

Section 2.1.1. In addition, two of these systems ([89, 101]) also require training of the

system on prior performances of each specific piece before alignment can be performed

for a new performance of the piece. This limits the applicability of these approaches to

pieces with preexisting aligned audio performances.

143

[26, 16, 17] are online algorithms designed for single-instrument polyphonic audio

performances. [26] uses an online DTW algorithm to follow piano performances, where

each audio frame is represented by a spectral temporal difference vector. This onset-

informed feature works well for piano performances, however, may have difficulties for

instruments with smooth onsets like strings and wind. [16] proposed a hierarchical HMM

approach to follow piano performances, where the observation likelihood is calculated

by comparing the pitches at the hypothesized score position and pitches transcribed by

Nonnegative Matrix Factorization (NMF) with fixed basis spectra. A basis spectrum is

learned for each pitch of the same piano beforehand. This method might have difficulties

in generalizing to multi-instrument polyphonic audio, as the timbre variation and tuning

issues involved make it difficult to learn a general basis spectrum for each pitch. [17]

proposed a probabilistic inference framework with two coupled audio and tempo agents

to follow a polyphonic performance and estimate its tempo. This system works well

on single-instrument polyphonic audio and is in theory applicable to multi-instrument

polyphonic audio, however, not enough statistical results are available to evaluate the

system’s performance up to date.

[55, 87, 86] are online algorithms designed for multi-instrument polyphonic audio

performances. [55] adopts string matching to follow a musical ensemble, where each

instrument needs to be recorded by a close microphone and streamed into a monophonic

pitch sequence. The system reads these pitch sequences, hence will not work in situations

where the instruments are not separately recorded. [87] uses a finite state HMM to model

the audio, where a state is a chord in the score. Each audio frame is processed by a discrete

filter bank. The responses of the filters that correspond to score notes give the matchness

144

between the audio frame and the score position. However, the coarse frequency resolution

of filter banks prevent it from differentiating close pitches. [86] uses a continuous-state

HMM process to model the audio performance, which allows an arbitrary precision of the

alignment. This idea is the same as the proposed method. In fact, they were published at

the same time. However, [86] does not use an as accurate representation as the proposed

method for audio.

5.1.2. Advances of the Proposed Method

I proposed a method to address the online audio-score alignment problem for multi-

instrument polyphonic music from a single-channel input. I used a continuous state HMM

process to model the audio performance, which will allow an arbitrary precision of align-

ment. I also used the multi-pitch information which provides a more accurate connection

between audio and score than traditional representations such as chroma features.

Table 5.2. Comparison of the proposed method with existing online audio-
score alignment method for multi-instrument polyphonic music.

[17] [55] [87] [86] Proposed
Takes single-channel mixture as input X X X X

Uses a continuous state model X X
Models tempo explicitly X X X X

Uses multi-pitch information X X X X
Tested on a large multi-instrument polyphonic dataset X X

The proposed method has been published in [32, 31]. As shown in Table 5.2, the

proposed method contributes to the online audio-score alignment field in several ways:

• It uses a continuous state HMM model, which allows each audio frame to be

aligned to any score position with any precision. Existing HMM-based methods

145

except [86] all use finite states, which only permits alignment precision at the

note/chord level.

• It explicitly models tempo as a parameter of the performance in the process

model. This improves alignment accuracy as shown in experiments.

• It uses an state-of-the-art multi-pitch likelihood model as the observation model.

Compared to the commonly used chroma representation, multi-pitch information

captures more details in music and forms a better connection between audio and

score. Compared to the multi-pitch models in [17, 87, 86], the one in the

proposed method is more accurate.

5.2. A Hidden Markov Process for Score Following

5.2.1. System Overview

Figure 5.1. Illustration of the state space model for online audio-score alignment.

I propose a hidden Markov process model, as illustrated in Figure 5.1. I decompose

the audio performance into time frames and process the frames in sequence. The n-th

frame is associated with a 2-dimensional hidden state vector sn = (xn, vn)T , where xn is

its score position (in beats), vn is its tempo (in Beat Per Minute (BPM)) and T denotes

146

matrix transposition. xn is drawn from the interval containing all score positions from

the beginning to the end. vn is drawn from the interval of all possible tempi [vl, vh], where

the lowest tempo vl is set to half of the score tempo and the highest tempo vh is set to

twice the score tempo. These values were selected as broad limits on how far from the

notated tempo a musician would be likely to deviate. Note that the the values of vl and

vh can be chosen based on prior information about the score. In addition, for multi-tempi

pieces, vl and vh can be changed correspondingly when a new tempo is encountered.

Each audio frame is also associated with an observation, which is a vector of PCM

encoded audio, yn. The aim is to infer the current score position xn from current and

previous observations y1, · · · ,yn. To do so, I need to define a process model to describe

how the states transition, an observation model to evaluate hypothesized score positions

for the current audio frame, and to find a way to do the inference in an online fashion.

5.2.2. The Process Model

A process model defines the transition probability from the previous state to the current

state, i.e. p(sn|sn−1). I use two dynamic equations to define this transition. To update

the score position, I use

(5.1) xn = xn−1 + l · vn−1,

where l is the audio frame hop size (10 milliseconds, in this work). Thus, score position

of the current audio frame is determined by the score position of the previous frame and

the current tempo.

147

To update the tempo, I use

(5.2) vn = {
vn−1 + nv if zk ∈ [xn−1, xn] for some k

vn−1 otherwise
,

where nv ∼ N (0, σ2
v) is a Gaussian noise variable; zk is the k-th note onset/offset time

in the score. This equation states that if the current score position has just passed a

note onset or offset, then the tempo makes a random walk around the previous tempo

according to a Gaussian distribution; otherwise the tempo remains the same.

The noise term nv introduces randomness to the system, which is to account for

possible tempo changes of the performance. Its standard deviation σv is set to a quarter

of the notated score tempo through this paper. I introduce the randomness through

tempo in Eq. (5.2), which will affect the score position as well. But I do not introduce

randomness directly in score position in Eq. (5.1). In this way, I avoid disruptive changes

of score position estimates.

In addition, randomness is only introduced when the score position has just passed a

note onset or offset. This is because it is rather rare that the performer changes tempo

within a note. Second, on the listener’s side, it is impossible to detect the tempo change

before hearing an onset or offset, even if the performer does make a change within a note.

Therefore, changing the tempo state in the middle of a note is not in accordance with

music performance, nor does it have evidence to estimate this change.

148

5.2.3. The Observation Model

The observation model is to evaluate whether a hypothesized state can explain the ob-

servation, i.e. p(yn|sn). Different representations of the audio frame can be used. For

example, power spectra [95], auditory filterbank responses [69], chroma vectors [62], spec-

tral and harmonic features [89, 91], multi-pitch analysis information [16], etc. Among

these representations, multi-pitch analysis information is the most informative one to eval-

uate the hypothesized score position for most fully-scored musical works. This is because

pitch information can be directly aligned to score information. Therefore, inspired by

[16], I use multi-pitch observation likelihood as our preferred observation model.

In the proposed score follower, the multi-pitch observation model is adapted from the

likelihood model of the proposed multi-pitch estimation described in Chapter 2. The

maximum likelihood model aims to find the set of pitches that maximizes the likelihood

of the power spectrum. As a reminder, this likelihood model is trained on thousands

of isolated musical chords generated by different combinations of notes from 16 kinds of

instruments. These chords have different chord types (major, diminished, etc.), instru-

mentations, pitch ranges and dynamic ranges, hence the trained likelihood model performs

well in multi-instrument polyphonic music pieces as shown in 2.6.

In calculating the observation likelihood p(yn|sn) in the proposed score follower, I

simply extract the set of all pitches at score position xn and use it as θ in Eq. (2.2). Then

p(yn|sn) is defined as

(5.3) p(yn|sn) = − C

lnL(θ)
,

149

where C is the normalization factor to make it a probability.

Note that I do not define p(yn|sn) = L(θ) , because it turns out that L(θ) can differ by

orders of magnitude for different sets of candidate pitches drawn from the score. Since,

I combine the process model and observation model to infer score position, this large

variation in observation model outputs can cause the observation model to gain too much

importance relative to the process model. For example, two very close score position

hypotheses would get very different observation likelihood, if they indicate different sets

of pitches. However, the probabilities calculated from the process model are not that

different. Therefore, the posterior probability of score position would be overly influenced

by the observation model, while the process model would be almost ignored. If the

observation model does not function well in some frame (e.g. due to a pitch-estimation

glitch), the estimated score position may jump to an unreasonable position, although the

process model tends to proceed from the previous score position smoothly. Eq. (5.3)

compresses L(θ). This balances the process model and the observation model.

Note that in constructing this observation model, I do not need to estimate pitches

from the audio frame. Instead, I use the set of pitches indicated by the score. This

is different from [16], where pitches of the audio frame are first estimated, then the

observation likelihood is defined based on the differences between the estimated pitches

and score-informed pitches. By skipping the pitch estimation step, I can directly evaluate

the score-informed pitches at a hypothesized score position using the audio observation.

This reduces model risks caused by pitch estimation errors.

The proposed observation model only considers information from the current frame,

and could be improved if considering information from multiple frames. Ewert et al. [44]

150

incorporate inter-frame features to utilize note onset information and improve the align-

ment accuracy. Joder et al. [65] propose an observation model which uses observations

from multiple frames for their conditional random field-based method. In the future I

want to explore these directions to improve our score follower.

5.3. Inference by Particle Filtering

Given the process model and the observation model, we want to infer the state of the

current frame from current and past observations. From a Bayesian point of view, this

means we first estimate the posterior probability p(sn|Y1:n),then decide its value using

some criterion like maximum a posterior (MAP) or minimum mean square error (MMSE).

Here, Y1:n = (y1, · · · ,yn) is a matrix whose each column denotes the observation in one

frame. Recall sn = (xn, vn)T , where xn is score position (in beats), vn is tempo (in Beat

Per Minute (BPM)) and T denotes matrix transposition. By Bayes’ rule, we have

p(sn|Y1:n)

= Cnp(yn|sn)

∫
p(sn|sn−1)p(sn−1|Y1:n−1) dsn−1,(5.4)

where yn, Y1:n, sn and sn−1 are all random variables; sn−1 is integrated over the whole

state space; Cn is the normalization factor. p(yn|sn) is the observation model defined in

Eq. (5.3) and p(sn|sn−1) is the process model defined by Eq. (5.1) and (5.2).

We can see that Eq. (5.4) is a recursive equation of the posterior probability p(sn|Y1:n).

It is updated from the posterior probability in the previous frame p(sn−1|Y1:n−1), using the

151

state transition probability p(sn|sn−1) and the observation probability p(yn|sn). There-

fore, if we can initialize p(s1|y1) in the first frame and update it using Eq. (5.4) as each

frame is processed, the inference can be done online.

This is the general formulation of online filtering (tracking). If all the probabilities in

Eq. (5.4) are Gaussian, then we just need to update mean and variance of the posterior in

each iteration. This is the Kalman filtering method. However, the observation probability

p(yn|sn) is very complicated. It may not be Gaussian and may not even be unimodal.

Therefore, we need to update the whole probability distribution. This is not easy, since

integration at each iteration is hard to calculate.

Particle filtering [27, 2] is a way to solve this problem, where the posterior distri-

bution is represented and updated using a fixed number of particles together with their

importance weights. In the score follower, I use the bootstrap filter, one variant of particle

filters, which assigns equal weight to all particles in each iteration.

Algorithm 4 presents the algorithm applied to score following. In Line 1, M particles

are initialized to have score positions equal to the first beat and tempi assume a uniform

distribution. Line 3 starts the iteration through the frames of audio. At this point, these

particles represent the posterior distribution p(sn−1|Y1:n−1) of sn−1. From Line 4 to 9,

particles are updated according to the process model in Eq. (5.1) and (5.2) and now

they represent the conditional distribution p(sn|Y1:n−1) of sn. In Line 10 and 11, the

importance weights of particles are calculated as their observation likelihood according to

Eq. (5.3), and then normalized to a discrete distribution. Then in Line 12, these particles

are resampled with replacement according to their weights to generate a new set of M

particles. This is the key step of a bootstrap filter, after which the new particles can be

152

Algorithm 4: InferenceByParticleFiltering

Input : N : number of frames of audio; y1, · · · ,yN : audio power spectra of all
frames; vl, vh: the lowest and highest possible tempo of audio; zk: onset
time (beats) of the k-th score note; σv: standard deviation of the noise
term nv; M : number of particles in each iteration.

Output: xn, vn: score position and tempo of each audio frame n = 1, · · · , N .

1 Initialize M particles (x(1), v(1)), · · · , (x(M), v(M)), where x(i) = 1 and

v(i) ∼ U [vl, vh];
2 for n← 1, · · · , N do
3 x(i) ← x(i) + l · v(i) by Eq. (5.1);
4 if xn−2 ≤ zk ≤ xn−1 for some k then
5 v(i) ← vn−1 + nv by Eq. (5.2);
6 end
7 else
8 v(i) ← v(i);
9 end

10 w(i) ← p(yn|(x(i), v(i))) by Eq. (5.3);

11 w(i) ← w(i)/Σw(i);

12 Sample particles with replacement according to w(i) to get a new set of

particles (x(1), v(1)) · · · , (x(M), v(M));

13 xn = 1
M

Σx(i) and vn = 1
M

Σv(i);
14 Output xn and vn;
15 end
16 return the estimated score position xn and tempo vn of all frames n = 1, · · · , N ;

thought of having equal weights. These particles now represent the posterior distribution

p(sn|Y1:n) of sn, and we calculate their mean as the score position and tempo estimate in

the n-th frame in Line 13.

In updating the tempo of each particle in Line 6, instead of using its previous tempo

v(i), I use the previously estimated tempo vn−1, i.e. the average tempo of all particles

in the previous frame. This practical choice avoids that the particles become too diverse

after a number of iterations due to the accumulation of randomness of nv.

153

The set of particles is not able to represent the distribution if there are too few, and

is time-consuming to update if there are too many. In this paper, we tried to use 100,

1,000 and 10,000 particles. I find that with 100 particles, the score follower is often lost

after a number of frames. But with 1000 particles, this rarely happens and the update is

still fast enough. Therefore, 1000 particles are used in this paper.

Unlike some other particle filters, the bootstrap filter I use does not have the common

problem of degeneracy, where most particles have negligible importance weights after a

few iterations [27, 2]. This is because the resampling step (Line 12 in Algorithm 4) in

each iteration eliminates those particles whose importance weights are too small, and

the newly sampled particles have equal weights again. This prevents the skewness in

importance weights from accumulating.

At each time step, the algorithm outputs the mean score position from the set of

particles as the estimate of the current score position. Someone may suggest choosing

MAP or median, since the mean value may lie in a low probability area if the distribution

is not unimodal. However, I find that in practice there is not much difference in choosing

mean, MAP or median. This is because the particles in each iteration generally only cover

a small range of the score (usually less than 0.5 beat), and mean, MAP and median are

close.

5.4. Algorithm Analysis

Algorithm 4 is an online algorithm that makes a Markovian assumption. It considers

only the result of the previous time-frame and the current spectrum in calculating its

output. Therefore the number of operations performed at each frame is bounded by a

154

constant value in terms of the number of past frames. I analyze this constant in terms

of the number of particles M (on the order of 1000 in our implementation), the number

of spectral peaks in the mixture K (on the order of 100), and the number of sources J

(typically less than 10).

Line 4-9 and 11-13 in Algorithm 4 all involve O(M) calculations. Line 10 involves M

times observation likelihood calculations, each of which calculates a multi-pitch likelihood

of the chord at the score position of the particle. However, these M particles usually only

cover a short segment (less than 0.5 beats) of the score. Within the span of a beat there are

typically few note changes (16 would be an extreme). Therefore there are usually a small

number of potential pitch sets to estimate the likelihood of (less than 16). Therefore, we

only need a few likelihood calculations, each of which is of O(K+J) according to Section

2.5. The number of sources J is much smaller than the number of spectral peaks K and

can be ignored, so the algorithm requires in total O(M +K) calculations.

5.5. Experiments

5.5.1. Datasets

A dataset to evaluate the proposed score following method must have the following com-

ponents: a single-channel polyphonic music audio, its MIDI score, and the ground-truth

alignment between the audio and the score. In this work, I use two datasets, one syn-

thetic and one real. The synthetic dataset is adapted from Ganseman [49]. It contains 20

single-line MIDI melodies made from random note sequences. Each melody is played by

a different instrument (drawn from a set of sampled acoustic and electric instruments).

Each melody is 10 seconds long and contains about 20 notes. Each MIDI melody has

155

Table 5.3. Statistics of 11 audio performances rendered from each mono-
phonic MIDI in Ganseman’s dataset [49].

Max tempo deviation 0% 10% 20% 30% 40% 50%
Max tempo fluctuation 1.00 1.20 1.43 1.71 2.06 2.50
Num. of performances 1 2 2 2 2 2

a single tempo but is rendered to 11 audio performances with different dynamic tempo

curves, using Timidity++ with the FluidR3 GM soundfont on Linux. The statistics of

the audio renditions of each melody are presented in Table 5.3. “Max tempo deviation”

measures the maximal tempo deviation of the rendition from the MIDI. “Max tempo

fluctuation” measures the maximal relative tempo ratio within the dynamic tempo curve.

I use these monophonic MIDI melodies and their audio renditions to generate poly-

phonic MIDI scores and corresponding audio performances, with polyphony ranging from

2 to 61. For each polyphony, I generate 24 polyphonic MIDI pieces by randomly selecting

and mixing the 20 monophonic MIDI melodies. I generate 24 corresponding audio pieces,

4 for each of the 6 classes of tempo variations. Therefore, there are in total 120 polyphonic

MIDI pieces with corresponding audio renditions. Alignment between MIDI and audio

can be obtained from the audio rendition process and are provided in [49]. Although this

dataset is not musically meaningful, I use it to test the proposed algorithm on audio mix-

tures with different polyphonies and tempi, which are two important factors in following

polyphonic music. In addition, the large variety of instruments in this dataset lets us see

the adaptivity of the proposed algorithm to different timbres.

The second dataset is the Bach10 dataset, as described in Section 2.6.1. It consists of

10 J.S. Bach four-part chorales played by a quartet of instruments: violin, clarinet, tenor

1Note that sources in this paper are all monophonic, so polyphony equals the number of sources.

156

saxophone and bassoon. Each musician’s part was recorded in isolation while the musician

listened to the others through headphones. I also created audio files by mixing the parts

to contain all duets and trios for each piece, totalling 60 duets and 40 trios. The scores

were MIDI downloaded from the internet2. The ground-truth alignment between MIDI

and audio was interpolated from annotated beat times of the audio. The annotated beats

were verified by a musician through playing back the audio together with these beats. I

note that, beside the general tempo difference between the audio and MIDI pieces, there

is often a fermata after a musical phrase in the audio but not in the MIDI. Therefore,

there are many natural tempo changes in the audio while the MIDI has a constant tempo.

I use this dataset to test the proposed algorithm in a more realistic situation.

5.5.2. Error Measure

I use Align Rate (AR) as proposed in [18] to measure the audio-score alignment results.

For each piece, AR is defined as the proportion of correctly aligned notes in the score.

This measure ranges from 0 to 1. A score note is said to be correctly aligned if its onset

is aligned to an audio time which deviates less than 50ms from the true audio time. It

is noted that MIREX3 uses average AR (called Piecewise Precision) of pieces in a test

dataset to compare different score following systems.

I also propose another metric called Average Alignment Error (AAE), which is defined

as the average absolute difference between the aligned score position and the true score

2http://www.jsbchorales.net/index.shtml
3The Music Information Retrieval Evaluation eXchange (MIREX) is an annual evaluation campaign for
Music Information Retrieval (MIR) algorithms. Score Following is one of the evaluation tasks. http:

//www.music-ir.org/mirex

http://www.jsbchorales.net/index.shtml
http://www.music-ir.org/mirex
http://www.music-ir.org/mirex

157

position of each frame of the audio. The unit of AAE is musical beat and it ranges from

0 to the maximum number of beats in the score.

I argue that AR and AAE measure similar but different aspects of an alignment.

Notice that AR is calculated over note onsets in the audio time domain, while AAE is

calculated over all audio frames in the score time domain. Therefore, AR is more musically

meaningful and more appropriate for applications like real-time accompaniment. For

example, if an alignment error of of a note is 0.1 beats, then the corresponding alignment

error in the audio time domain can be either 100ms if the tempo is 60BPM or 33.3ms if

the tempo is 180BPM, which induce significantly different accompaniment perceptions.

AAE, however, is more appropriate for applications like score-informed source separation,

since not only note onsets but all audio frames need to be separated. In addition, AAE

is well correlated with the accuracy of score-informed pitches given the typical lengths

of notes in a piece of music, hence helps analyze the main factor of source separation

errors. For example, suppose the shortest note is an eighth-note, then AAE of 0.2 beats

will indicate a high accuracy of score-informed pitches, and the score following stage will

not be the main factor causing source separation errors.

In [18] there is another important metric called “latency” to measure the time delay

of an online score follower from detecting to reporting a score event. We do not need this

metric since the score follower in Soundprism computes an alignment right after seeing the

input audio frame and the computation time is negligible. Therefore, there is no inherent

delay in the score follower. The only delay from the audio frame being performed to the

aligned score position being output is the frame center hop size, which is 10ms in this

work.

158

5.5.3. Comparison Methods

I compare the proposed score following method with Scorealign, an open-source offline

audio-score alignment system4 based on the method described in [62].

5.5.4. Results on the Synthetic Dataset

Table 5.4 shows the score alignment results of the proposed method and Scorealign for

different polyphony on the synthetic dataset. It can be seen that Scorealign obtains

higher than 50% average Align Rate (AR) and less than 0.2 beats Average Alignment

Error (AAE) for all polyphony, while the results of the proposed method are significantly

worse, especially for polyphony 2. However, as polyphony increases, the gap between the

proposed method and Scorealign is significantly reduced. This supports our claim that

the proposed method works better for high polyphony pieces.

Table 5.4. Audio-score alignment results (Average±Std) versus polyphony
on the synthetic dataset. Each value is calculated from 24 musical pieces.

metric AR (%) AAE (beat)
polyphony Proposed Scorealign Proposed Scorealign

2 27.6±17.3 50.1±27.4 0.60±0.64 0.15±0.08
3 36.3±16.5 51.6±24.2 0.25±0.20 0.13±0.07
4 41.4±13.7 53.9±23.3 0.21±0.09 0.15±0.09
5 47.0±18.7 60.8±20.1 0.24±0.10 0.16±0.09
6 49.8±19.6 55.5±23.8 0.30±0.23 0.18±0.09

Table 5.5 indicates that the proposed method slowly degrades as the tempo variation

increases, but not as quickly as Scorealign. For the proposed method on tempo variation

from 0% to 30%, AR are around 45% and AAE are around 0.25 beats. Then they degrades

to about 30% of AR and 0.4 beats of AAE. Results of Scorealign, however, obtains almost

4http://sourceforge.net/apps/trac/portmedia/wiki/scorealign

http://sourceforge.net/apps/trac/portmedia/wiki/scorealign

159

Table 5.5. Audio-score alignment results versus tempo variation on the syn-
thetic dataset.

metric AR (%) AAE (beat)
tempo Proposed Scorealign Proposed Scorealign

0% 47.1±22.0 96.6±5.4 0.28±0.39 0.01±0.01
10% 51.6±18.9 38.7±16.9 0.31±0.49 0.18±0.05
20% 44.3±16.4 50.5±11.5 0.22±0.07 0.16±0.06
30% 41.5±14.2 51.6±12.5 0.25±0.12 0.16±0.04
40% 27.9±13.0 48.2±17.9 0.46±0.49 0.19±0.07
50% 30.0±15.7 40.7±14.9 0.39±0.25 0.22±0.05

perfect alignment on pieces with no tempo variation. Then it degrades suddenly to about

50% of AR and 0.18 beats of AAE. Remember that in the case of 50% tempo variation,

the tempo of the fastest part of the audio performance is 2.5 times of the slowest part

(refer to Table 5.3), while the score tempo is a constant. This is a very difficult case for

online audio-score alignment.

5.5.5. Results on the Real music dataset

Table 5.6. Audio-score alignment results versus polyphony on the Bach
chorale dataset.

metric AR (%) AAE (beat)
polyphony Proposed Scorealign Proposed Scorealign

2 53.8±13.9 45.1±9.2 0.17±0.16 0.19±0.04
3 60.6±12.7 45.7±8.5 0.13±0.03 0.19±0.04
4 69.3±9.3 46.6±8.7 0.12±0.03 0.15±0.05

Table 5.6 shows audio-score alignment results versus polyphony when measured on real

human performances of Bach chorales. Here, the proposed method performs better than

Scorealign on both AR and AAE. This may indicate that the proposed method is more

adapted for real music pieces than pieces composed of random notes. More interestingly,

the average AAE of the proposed method decreases from 0.17 to 0.12 when polyphony

160

increases. Again, this suggests the ability of dealing with high polyphony of the proposed

method. In addition, the average AAE of the proposed method is less than a quarter beat

for all polyphony. Since the shortest notes in these Bach chorales are sixteenth notes, the

score follower is able to find correct pitches for most frames.

5.6. Conclusions

In this chapter I proposed an online algorithm for audio-score alignment of polyphonic

music composed of harmonic sources. This is an essential step towards MASA informed

by a score. I use a hidden Markov process to model the audio performance. The state

space is defined as a 2-d space of score position and tempo. The observation model is

defined as the multi-pitch likelihood of each frame, i.e. the likelihood of seeing the audio

frame given the pitches at the aligned score position. Particle filtering is employed to

infer the score position and tempo of each audio frame in an online fashion.

I performed experiments on both synthetic audio and real music performances and

compared it with a well-known offline audio-score alignment method. Results showed

that the proposed method can deal with multi-instrument music with high polyphony

and some degree of tempo variation. Interestingly, the proposed method performs better

when the polyphony increases from 2 to 6. However, it degrades significantly when the

tempo variation of the performance increases. Results also showed that the proposed

method achieves worse results on the synthetic audio dataset, but better results on the

real music dataset, than the comparison offline method.

For future work, I want to incorporate some onset-like features in the observation

model of the proposed method, to improve the alignment accuracy. I also want to improve

161

the its robustness, to deal with the situation that performers occasionally make mistakes

and deviate from the score.

162

CHAPTER 6

Score-informed Source Separation

6.1. Introduction

Given an alignment of the music audio and the score, we know the corresponding score

position of each audio frame. If this estimate is correct, it can help us analyze the music

audio scene. The problem of separating the source signals of a polyphonic music audio

provided an aligned score is called Score-informed Source Separation (SISS).

As I focus on polyphonic music composed of harmonic sound sources, I look for pitch

information in the score. Basically, the aligned score tells us what pitch (if any) is supposed

to be played by each source in each frame. Although the score-suggested pitch would not

be exactly the same as the audio-performed pitch, it can help us more accurately estimate

the audio-performed pitch. A good estimate of the audio-performed pitch can then help

separate the harmonic source from the mixture.

Similar to the audio-score alignment algorithm proposed in Chapter 5, I do score-

informed source separation in an online fashion. With an online algorithm, both online

and offline applications are possible.

6.1.1. Related Work

For score-informed source separation, there exist several approaches in the literature [138,

103, 48, 80, 43]. Woodruff et al. [138] work on stereo music, where spatial cues

163

are utilized together with score-informed pitch information to separate sources. This

approach does not apply to my problem, since I am working on single-channel source

separation. Raphael [103] trains a model to classify time-frequency bins that belong to

solo or accompaniment using a labeled training set, then applies this model to separate

the solo from the mixture. This method, however, cannot separate multiple sources from

the mixture.

[48, 80, 43] address single-channel source separation when a well-aligned score is

provided. Ganseman et al. [48] use Probabilistic Latent Component Analysis (PLCA) to

learn a piece-specific source model from the synthesized audio of the source’s score, and

then apply these source models to real audio mixtures. In order to obtain good separation

results, the synthesized audio should have similar timbre to the source signal, so that the

learned source models can properly represent the real sources. However, this requirement

is often too strong as the timbral difference between a synthesizer and a real instrument

can be large for some instruments. Li et al. [80] first refine score-indicated pitches for

the audio and then uses a least-square framework to estimate their harmonics. The key

assumption is that harmonics of the same note have common amplitude modulations

over time. This assumption, albeit an important human auditory perception cue, can

be problematic for some instruments. For example, the decay rates of higher frequency

harmonics of a piano note are much faster than those of the lower frequency harmonics.

Ewert and Müller [43] make less assumptions. They use Nonnegative Matrix Factor-

ization (NMF) to separate the left and right hand performances of piano, where each pitch

has a harmonic basis spectrum and an onset basis spectrum. They use the score to initial-

ize the harmonic spectra and their activation weights, then the NMF procedure adapts

164

them for each specific piece. The basic assumption is that notes of the same pitch (and

same instrument) share the same basis spectra. This assumption is reasonable, however,

the number of parameters to model the sources is quite large. For a quartet of different

instruments, suppose each instrument plays 20 different pitches in this piece and suppose

the dimensionality of basis spectra is 1024 (equivalent to 46ms long window with 44.1kHz

sampling rate). Then there would be in total 4× 20× 1024 = 81920 parameters to model

these sources.

Besides their individual disadvantages, [48, 80, 43] are all offline algorithms. They

all require the entire audio piece before separation. Therefore, they cannot be applied

in my scenario, where I want to build an online MASA system. In the following, I will

propose an online score-informed source separation method.

6.1.2. Advances of the Proposed System

I have published the preliminary online source separation algorithm in [31]. Overall, the

proposed method has the following advantages:

• It works online and can be easily implemented to work in real time.

• No training of the specific piece is needed before separation.

6.2. Refining Score Pitches

The pitches provided by the score θ = {F01, · · · , F0J} are integer MIDI pitch num-

bers. MIDI pitch numbers indicate keys on the piano keyboard. Typically, MIDI 69 indi-

cates the A above Middle C. Assuming A440-based equal temperament allows translation

from MIDI pitch to frequency in Hz. The resulting frequencies are rarely equal to the real

165

pitches played in an audio performance. In order to extract harmonics of each source in

the audio mixture, we need to refine them to get accurate estimates θ̂ = {F̂01, · · · , F̂0J}.

I refine the pitches using the multi-pitch estimation algorithm as described in [33], but

restricting the search space in the Cartesian product
∏

i[F0i−50cents, F0i+50cents]. The

algorithm maximizes the multi-pitch likelihood L(θ̂) in Eq. (2.2) with a greedy strategy,

i.e. refining (estimating) pitches one by one. The set of refined pitches θ̂ starts from an

empty set. In each iteration, the refined pitch that improves the likelihood most is added

to θ̂. Finally, I get the set of all refined pitches. In refining each pitch F0i, we search F̂0i

in [F0i − 50cents, F0i + 50cents] with a step of 1Hz.

6.3. Reconstruct Source Signals

For each source in the current frame, I build a ratio frequency mask and multiply it

with the magnitude spectrum of the mixture signal to obtain the magnitude spectrum of

the source. Then I apply the original phase of the mixture to the magnitude spectrum to

calculate the source’s time-domain signal. Finally, the overlap-add technique is applied

to concatenate the current frame to previously generated frames. The sum of the masks

of all the sources equals one in each frequency bin, so that the sources sum up to the

mixture.

In order to calculate masks for sources, I first identify their harmonics and overlapping

situations from the estimated pitches. For each source, I only consider the lowest 20

harmonics, each of which covers 40Hz in the magnitude spectrum. This width is assumed

to be where the main lobe of each harmonic decreases 6dB from the center, when I use a

46ms Hamming window. These harmonics are then classified into overlapping harmonics

166

and non-overlapping harmonics, according to whether the harmonic’s frequency range is

overlapped with some other harmonic’s frequency range of another source.

All frequency bins in the spectrum can then be classified into three kinds: a nonhar-

monic bin which does not lie in any harmonic’s frequency range of any source, a non-

overlapping harmonic bin which lies in a non-overlapping harmonic’s frequency range and

an overlapping harmonic bin which lies in an overlapping harmonic’s frequency range.

For different kinds of bins, masks are calculated differently.

For a nonharmonic bin, masks of all active sources are set to 1/J , where J is the

number of pitches (active sources) in the current frame. In this way the energy of the

mixture is equally distributed to all active sources. Although energy in nonharmonic bins

is much smaller than that in harmonic bins, experiments show that distributing the energy

reduces artifacts in separated sources, compared to discarding it. For a non-overlapping

harmonic bin, the mask of the source that the harmonic belongs to is set to 1 and the

energy of the mixture is assigned entirely to it.

For an overlapping harmonic bin, the masks of the sources whose harmonics are in-

volved in this overlapping situation, are set in inverse proportion to the square of their

harmonic numbers (e.g. 3 is the harmonic number of the third harmonic). For example,

suppose a bin is in a harmonic which is overlapped by J−1 harmonics from other sources.

Then the mask of the i-th source in this bin is defined as

(6.1) mi =
1/h2i

ΣJ
j=11/h

2
j

,

where hk is the harmonic number of the k-th source.

167

This simple method to resolve overlapping harmonics corresponds to the assumption

that 1) overlapping sources have roughly the same amplitude; 2) all notes have harmon-

ics amplitudes decay at 12dB per octave from the fundamental, regardless of pitch and

instrument that produced the note. These assumptions are very coarse and will never be

fulfilled in the real world. One can improve upon these assumptions by designing a more

delicate source filter [42], interpolating the overlapping harmonics from non-overlapping

harmonics based on the spectral smoothness assumption in each frame [127], or the tem-

poral envelope similarity assumption of different harmonics of one note [130] or both

[142]. Nevertheless, Eq. (6.1) gives a simple and relatively effective way to resolving

overlapping harmonics as shown in experiments.

6.4. Experiments

6.4.1. Datasets

I use the same synthetic and real music performance datasets as described in Section 5.5.1

to evaluate the proposed score-informed source separation method.

6.4.2. Error Measure

I use the BSS EVAL toolbox [124] to evaluate the separation results of the proposed

method. Basically, each separated source is decomposed into a true source part and

error parts corresponding to interferences from other sources and algorithmic artifacts.

By calculating the energy ratios between different parts, the toolbox gives three met-

rics: Signal-to-Interference Ratio (SIR), Signal-to-Artifacts Ratio (SAR) and Signal-to-

Distortion Ratio (SDR) which measures both interferences and artifacts.

168

6.4.3. Input Alignment

I feed the proposed method with two kinds of input alignments. The first one is the

estimated audio-score alignment from Chapter 5. Source separation achieved in this

setting is the output of the proposed score-informed MASA system (the second part of

the dissertation). It is denoted by “Soundprism” (refer Section 7.1. The second one is the

ground-truth audio-score alignment. This removes the influence of the score follower and

evaluates the proposed source separation method only. It is denoted by “Ideally-aligned”.

6.4.4. Comparison Methods

I also compare the proposed method with three other source separation methods. Ganse-

man10 is a score-informed source separation system proposed by Ganseman et al. [48,

49]. I use their own implementation. This system first aligns audio and score in an offline

fashion, then uses a Probabilistic Latent Component Analysis (PLCA)-based method to

extract sources according to source models. Each source model is learned from the MIDI-

synthesized audio from the source’s score. For the synthetic dataset, these audio pieces

are provided by Ganseman. For the real music dataset, these audio pieces are synthesized

using the Cubase 4 DAW built-in synthesis library without effects. Instruments in the

synthesizer are selected to be the same as the audio mixture, to make the timbre of each

synthesized source audio as similar as possible to the real source audio. However, in real

scenarios that the instruments of the sources are not recognizable, the timbre similarity

between the synthesized audio and the real source cannot be guaranteed and the system

may degrade.

169

MPESS is a source separation system based on multi-pitch estimation and streaming

in Chapter 2 and 3. From the pitch estimate of each source at each frame, this system

applies the proposed source separation method in Section 6.3 to separate the source signal.

MPESS gives source separation results based on the proposed audio-only MASA system

(the first part of the dissertation). No score information is utilized here.

Oracle separation results are calculated using the BSS Oracle toolbox [125]. They are

the theoretically, highest achievable results of the time-frequency masking-based methods

and serve as an upper bound of source separation performance. It is noted that oracle

separation can only be obtained when the reference sources are available.

6.4.5. Results on the Synthetic Dataset

Figure 6.1 shows boxplots of the overall separation results of the five separation systems

on pieces of polyphony 2. Each box represents 48 data points, each of which corresponds

to the audio from one instrumental melody in a piece.

For pieces of polyphony 2, if the two sources are of the same loudness, then the SDR

and SIR of each source in the unseparated mixture should be 0dB. It can be seen that

Soundprism improves the median SDR and SIR to about 5.5dB and 12.9dB respectively.

Ideal alignment further improves SDR and SIR to about 7.4dB and 15.0dB respectively.

This improvement is statistically significant in a nonparametric sign test with p < 10−6.

This suggests that the score following stage of Soundprism has space to improve. Com-

paring Soundprism with Ganseman10, we can see that they get similar SDR (p = 0.19)

and SAR (p = 1) while Ganseman10 gets significant higher SIR (p < 10−7). But remem-

ber that Ganseman10 uses an offline audio-score alignment and needs to learn a source

170

Figure 6.1. Separation results on pieces of polyphony 2 from the synthetic
dataset for 1) Soundprism, 2) Ideally-aligned, 3) Ganseman10, 4) MPESS
and 5) a perfect Oracle. Each box represents 48 data points, each of which
corresponds to an instrumental melodic line in a musical piece from the
synthetic data set. Higher values are better.

model from MIDI-synthesized audio of each source. Without using score information,

MPESS obtains significantly worse results than all the three score-informed source sep-

aration systems. This supports the idea of using score information to guide separation.

Finally, Oracle results are significantly better than all the other systems. Especially for

Ideally-aligned, this gap of performance indicates that the separation stage of Soundprism

has plenty of room to improve.

Figure 6.2 shows SDR comparisons for different polyphony. SIR and SAR comparisons

are omitted as they have the same trend as SDR. It can be seen that when polyphony in-

creases, the performance difference between Soundprism and Ideally-aligned gets smaller.

This is to be expected, given that Table 5.4 shows our score following stage performs better

for higher polyphony. Conversely, the difference between Soundprism and Ganseman10

171

Figure 6.2. SDR versus polyphony on the synthetic dataset for 1) Sound-
prism, 2) Ideally-aligned, 3) Ganseman10, 4) MPESS and 5) Oracle. Each
box of polyphony n represents 24n data points, each of which corresponds
to one instrumental melodic line in a musical piece.

gets larger. This suggests that pre-trained source models are more beneficial for higher

polyphony. Similarly, the performance gap from MPESS to the three score-informed sepa-

ration systems gets larger. This suggests that score information is more helpful for higher

polyphony pieces.

The good results obtained by Scorealign helps the separation results of Ganseman10,

as they use the same audio-score alignment algorithm. However, as the SDR obtained by

Soundprism and Ganseman10 in Figure 6.1 and 6.2 are similar, the performance difference

of their audio-score alignment stages is not vital to the separation results.

It is also interesting to see how score-informed separation systems are influenced by

the tempo variation of the audio performance. Figure 6.3 shows this result. It can be

seen that the median SDR of Soundprism slowly degrades from 2.8dB to 1.9dB as the

max tempo deviation increases from 0% to 50%. A two sample t-test with α = 0.05

172

Figure 6.3. SDR versus tempo variation on the synthetic dataset for 1)
Soundprism (dark gray), 2) ideally-aligned (light gray) and 3) Ganseman10
(white). Each box represents 80 data points, each of which corresponds to
one instrumental melodic line in a musical piece.

shows the mean SDR of the first 5 cases are not significantly different, while the last

one is significantly worse. This supports the conclusion that the score following stage of

Soundprism slowly degrades as the tempo variation increases, but not much.

6.4.6. Results on the Real Music Dataset

Figure 6.4 first shows the overall results on pieces of polyphony 2. There are four dif-

ferences from the results of the synthetic dataset in Figure 6.1. First, the results of

Soundprism and Ideally-aligned are very similar on all measures. This suggests that the

score following stage of Soundprism performs well on these pieces. Second, the difference

between Soundprism/Ideally-aligned and Oracle is not that great. This indicates that

the separation strategy used in Section 6.3 is suitable for the instruments in this dataset.

Third, Soundprism obtains a significantly higher SDR and SAR than Ganseman10 while

173

Figure 6.4. Separation results on pieces of polyphony 2 from the Bach
chorale dataset for 1) Soundprism, 2) Ideally-aligned, 3) Ganseman10, 4)
MPESS and 5) Oracle. Each box represents 120 data points, each of which
corresponds to one instrumental melodic line in a musical piece.

a lower SIR. This indicates that Ganseman10 performs better in removing interference

from other sources while Soundprism introduces less artifacts and leads to less overall dis-

tortion. Finally, the performance gap between MPESS and the 3 score-informed source

separation systems is significantly reduced. This means that the multi-pitch tracking re-

sults are more reliable on real music pieces than random note pieces. But still, utilizing

score information improves source separation results.

Figure 6.5 shows results for different polyphony. We can see that Soundprism and

Ideally-aligned obtain very similar results for all polyphony. This suggests that the score

following stage performs well enough for the separation task on this dataset. In addi-

tion, Soundprism obtains a significantly higher SDR than Ganseman10 for all polyphony

(p < 10−7). Furthermore, MPESS degrades much faster than the three score-informed

174

Figure 6.5. SDR versus polyphony on the Bach chorale dataset for 1)
Soundprism, 2) Ideally-aligned, 3) Ganseman10, 4) MPESS and 5) Ora-
cle. Each box of polyphony 2, 3 and 4 represents 2×60 = 120, 3×40 = 120
and 4× 10 = 40 data points respectively, each of which corresponds to one
instrumental melodic line in a musical piece.

separation systems, which again indicates that score information is more helpful in the

pieces with higher polyphony.

The SDR of polyphony 4 showed in Figure 6.5 are calculated from all tracks of all

quartets. However, for the same piece of a quartet, different instrumental tracks have

different SDRs. A reasonable hypothesis is that high frequency tracks have lower SDR

since they have more harmonics overlapped by other sources. However, Figure 6.6 shows

opposite results. It can be seen that Track 1, 2 and 3 have similar SDRs, but Track 4

has a much lower SDR. This may suggest that the energy distribution strategy used in

Section 6.3 biases to the higher-pitched source.

175

Figure 6.6. SDR versus instrumental track indices on pieces of polyphony
4 in the Bach chorale dataset for 1) Soundprism, 2) Ideally-aligned, 3)
Ganseman10, 4) MPESS and 5) Oracle. Tracks are ordered by frequency,
i.e., in a quartet Track 1 is soprano and Track 4 is bass.

6.4.7. Commercially recorded music examples

I test Soundprism and its comparison systems on two commercial recordings of mu-

sic pieces from the RWC database [54]. These pieces were not mixed from individ-

ual tracks, but recorded directly as a whole from an acoustic environment. There-

fore, we do not have the ground-truth sources and alignments, hence cannot calcu-

late measures. The separated sources of these pieces can be downloaded from http:

//www.cs.northwestern.edu/~zdu459/jstsp2011/examples. This webpage also con-

tains several examples from the Bach chorale dataset.

6.5. Conclusions

In this chapter, I proposed a simple online score-informed source separation method

for polyphonic music composed of harmonic sources. Given an alignment between the

http://www.cs.northwestern.edu/~zdu459/jstsp2011/examples
http://www.cs.northwestern.edu/~zdu459/jstsp2011/examples

176

music audio and its score, I first refined the score-informed pitches in each audio frame.

Then I separated the source signals from their pitches through time-frequency masking.

Overlapping harmonics are resolved by assigning the mixture energy to each overlapping

source in reverse proportion to the square of their harmonic numbers.

Experiments on both synthetic audio and real music performances showed that the

proposed simple method achieves better separation than a state-of-the-art offline score-

informed source separation algorithm. In addition, comparisons with the proposed multi-

pitch estimation and streaming based source separation showed that the score information

does significantly improve source separation.

Although the proposed method is simple and effective, the comparison with the Oracle

separation showed that there is much room to improve its performance. One direction is to

design a more advanced method to distribute the energy of overlapping harmonics. In the

current method, no source models or timbre information are involved in the distribution.

To improve it, one can learn a source model (e.g. a typical harmonic structure model for

each source) from the mixture signal directly, by clustering all the harmonic structures of

all pitches in all frames. This idea is similar to the multi-pitch streaming work proposed

in Chapter 3. With a source model, the separated signals would be more realistic to the

real source signals. This will be my future work.

177

CHAPTER 7

Applications

The proposed audio-score alignment algorithm in Chapter 5 and the score-informed

source separation algorithm in Chapter 6 are both online algorithms. Online algorithms

can be applied to offline scenarios as well. In this chapter, I propose two interesting

applications of them, one in an online scenario and one in an offline scenario.

7.1. Online Application: Soundprism

In the online scenario, I imagine an interesting application called Soundprism as shown

in Figure 7.1. Analogous to a prism which separates a ray of white light into multiple rays

of light with different colors in real time, a soundprism separates a piece of polyphonic

music audio into multiple sources in real time. To the best of my knowledge, there is no

such existing system.

Figure 7.1. Illustration of the idea of Soundprism.

178

Soundprism can be helpful in many scenarios. For example, it would allow every

audience member in a classical music concert to select their favorite personal mix (e.g.,

switch between enjoying the full performance and concentrating on the cello part) even

though the instruments are not given individual microphones. Soundprism could also

allow real-time remixing of CDs, live broadcasts or TV programs of monaural or stereo

classical music.

Currently Soundprism is implemented as an offline system in Matlab, and it runs

about 3 times slower than real time on a four-core 2.67GHz CPU under Windows 7. I

expect to implement it on a mobile device and make it a truly real-time system.

7.2. Offline Application: Interactive Music Editing

In the offline scenario, one interesting application is interactive music editing. The

idea is to let users edit musical objects in the polyphonic audio through a computer

interface, as shown in Figure 7.2. A user can load the audio and its score, and align them

through the interface. The proposed MASA system behind the interface will recognize

notes indicated in the score from the audio, analyze their parameters such as loudness,

pitch, onset, offset and timbre, and segregate their physical signals.

Then the user can perform two kinds of editing. The first kind is Note-wise Editing.

The user can select a single note and change its parameters. For example, the user

can correct the pitches of the out-of-tune notes, and change the timbre of the non-well-

articulated notes to beautify the musical performances. The second kind is Track-wise

Editing. The user can select a whole track of notes played by an instrument and change

their parameters simultaneously. This kind of operation is interesting for audio engineers

179

Figure 7.2. Interface of the interactive editing application. A user can edit
the audio signal of a musical object (e.g. a note or an instrumental track)
by selecting the object in the score and modifying its parameters such as
loudness, pitch, onset, offset and timbre.

in music production. They can transpose an instrumental track from one scale to another,

or change the timbre of the clarinet part to oboe. They can also copy a track and reuse

it in other musical pieces.

There is a commercial interactive music editing software called “Melodyne” 1, which

allows users to access individual notes of polyphonic music audio and modify their param-

eters. However, since Melodyne does not utilize score information, it fails in organizing

notes according to sources and separating the sources when multiple instruments are play-

ing. It can only deal with polyphonic music played by a single instrument (e.g. piano or

guitar).

A prototype system of the interactive music editing application has been implemented

in Matlab in a computer. Its interface is shown in Figure 7.2. It currently only supports

1http://www.celemony.com/cms/

http://www.celemony.com/cms/

180

note-wise and track-wise volume changes. I expect to extend them to more operations

such as pitch, onset/offset and timbre edits.

181

CHAPTER 8

Conclusions

In this dissertation, I proposed computational models to address the music audio

scene analysis problem. I focused on polyphonic music audio composed of harmonic

sound sources, and addressed the problem in two scenarios.

In the first scenario, I developed a multi-pitch analysis system to analyze the music

audio scene solely from the audio. Given a piece of polyphonic music audio, the system

first estimates all the pitches of all sources in each audio frame. It then streams these

pitch estimates into pitch streams, each of which corresponds to a source. From the

estimated pitch streams, audio signals of each source or each note can be separated from

the mixture. The system is general enough to deal with not only music audio, but any

polyphonic audio composed of harmonic sources.

In the second scenario, I assumed the musical score is available. I developed a system

to leverage the score information to analyze the music audio scene. The system first aligns

the music audio with the score, then uses the score-provided pitch information to separate

the sources of the audio mixture. The system performs in an online fashion. Compared

to solely analyzing audio, the score information does significantly help improve the source

separation performance, to a level that is promising for further applications. I therefore

proposed two interesting applications, one being real-time music source separation and

the other being interactive music editing.

182

8.1. Limitations

The biggest limitation of the proposed methods in my dissertation is that they were

designed to only deal with harmonic sound sources. A lot of polyphonic music, however,

use inharmonic sources such as percussive instruments extensively. Their spectral patterns

do not show harmonic regularities, and when they are strong, they will mask the peak-

harmonic-pitch relation of harmonic sources. This will deteriorate the performance of

the proposed multi-pitch estimation method in Chapter 2, which is the foundation of

the proposed systems. Inharmonic sources will also affect the performance of the the

multi-pitch streaming method in Chapter 3. This method streams pitches through timbre

modeling of harmonic sources. It cannot model the timbre of inharmonic sources, and

the modeling of harmonic sources will also be interfered by the presence of inharmonic

sources.

The audio-score alignment method proposed in Chapter 5 models the audio-score

relation through the pitch content. It does not consider prominent inharmonic sound

objects (such as drums) which could be used for the alignment. In fact, the presence

of percussive instruments will interfere the modeling of the pitch content. Finally, the

score-informed source separation method in Chapter 6 uses harmonic masking to separate

the source signals. If there is only one inharmonic source in the mixture, its signal can

be obtained after separating all the harmonic sources. But if there are more than one

inharmonic sources, the proposed method would not work.

Although the proposed methods can work to some extent on quasi-inharmonic sources,

as shown on the speech dataset in Chapter 4, their intrinsic design prevents their applica-

tion to scenarios where strong inharmonic sources are present. They need to be combined

183

with other methods that are designed to model inharmonic sources to broaden their ap-

plication.

The second limitation is on the first part of the dissertation. It cannot fully analyze

the audio scene when polyphonic music instruments such as piano or guitar are present.

The multi-pitch estimation method in Chapter 2 would still estimate simultaneous pitches

in each frame, but the multi-pitch streaming method in Chapter 3 would not be able to

output a single pitch trajectory of the polyphonic instrument. The cannot-link constraints

prevents simultaneous pitches produced by the polyphonic instrument being clustered into

the same pitch trajectory. Consequently, the source signal of the polyphonic instrument

cannot be separated as a whole from the audio mixture. One way to address this problem

would be removing the cannot-link constraints, but this would cause inaccuracies of pitch

streaming of other monophonic instruments. It is noted that this limitation does not exist

in the second part of the dissertation. This is because the pitch streaming information is

provided by the score.

The third limitation is on the the audio-score alignment method proposed in Chapter 5.

It fails for musical audio whose pitch content mismatches that of the score. This mismatch

can be perceptually subtle, such as “staccato” notes. Staccato is a performing style of a

note where the note is played shorter than then length written in the score. This affects

the offset time of the note and the onset time is still performed as expected. Staccato

note are common in many music pieces, and performances containing staccato notes are

still considered faithful to the score. However, there does exist significant mismatch on

the pitch content between the audio and score. In the score, the expected length of a

note might be one beat long, but the staccato performance of this note might only last

184

for half a beat. Therefore, the audio frames after the offset of this staccato note would

not contain the score-indicated pitch of this note. The relation between an audio frame

and a score position is modeled through the multi-pitch observation model, which is very

sensitive to the mismatch on the pitch content. This significantly affects the robustness

of the alignment on these pieces.

8.2. Future Work

For future work, I would like to address the limitations stated in the previous section.

To make the proposed multi-pitch analysis models applicable to audio with strong inhar-

monic sources, I would like to combine them with methods that model inharmonic sounds.

In fact, I have been collaborating with my colleagues in this direction towards melody

extraction of pop music. My colleagues’ REPET method [99, 98] models repetitions of

the time-frequency content of audio, which contains most of the inharmonic sounds and

mostly belong to the accompaniment part. It does not model the harmonic content of

music, which is important for the melody. Preliminary results have shown that combining

my multi-pitch analysis method with REPET does achieve better melody extraction than

using either method alone.

I would also like to extend the multi-pitch streaming work to inharmonic sounds. The

basic idea of using timbre similarity to streaming sound objects of the same source should

be universal for both harmonic and inharmonic sources. The challenge is to find effective

timbre representations of inharmonic sounds. Take the problem of streaming a person’s

footsteps of a person as an example, there might be no regular pattern in the spectrum

of a single footstep, but the evolution of a series of footstep spectra would probably make

185

them stand out from noise and characterize the person. This is because footsteps of

the same person have similar temporal patterns due to his/her typical gait. The use of

temporal patterns at the sound-object level (e.g. the regular pattern of footsteps) will

also help stream them by sources.

To address the staccato note limitation in the audio-score alignment method, I pro-

pose to make the multi-pitch observation model be less sensitive at the perceptually less

important parts such as offsets. This could be realized through an onset detection on

the audio [6] and a weighting function on the multi-pitch observation model to weight

more on the frames that are right after an onset less on the frames that are far from an

onset. In fact, the onset information can also improve the alignment accuracy [44, 65].

Only using the multi-pitch information, the first audio frame in the sustain part of a note

can be aligned to any position of the corresponding note with no difference. With onsets

detected, I can require the first frame to be always aligned to the onset of a score note.

Besides addressing the limitations of my dissertation, I also would like to work on new

models to deepen and broaden my research. The harmonic masking-based separation

method proposed in Chapter 6 distributes the mixture spectral energy purely according

the overlapping harmonic situations and harmonic indices. This method is very simple,

but the separated spectra of each source may not resemble those of the original sources,

and may not resemble each other either. For future work, I would like to incorporate

source models to improve the separation performance. The source models could be learned

beforehand from isolated recordings in a supervised way, or learned during separation

in an unsupervised way (clustering). In fact, I have been collaborating with several

researchers to learn a multi-excitation-filter model [11] for each source training recordings

186

in a supervised way, and to adapt the model to the test mixture. Preliminary results have

shown significant improvement of the score-informed source separation results.

To broaden my research on fusing multimodal music processing, I would like to inte-

grate other media especially visual information with audio. This will help analyze complex

audio scenes which are difficult if only using audio information. For example, mouth local-

ization has been shown helpful for speech recognition in noisy environments [45]. A more

interesting question is whether we can use audio analysis to help with visual analysis. One

scenario would be automatic pre-localization of the solo performer(s) in a concert for cam-

era shooting purposes. Currently the cameramen need to be very familiar with the music

and know how to read musical scores. With score following techniques, the computer

knows where the music is on the score. It can then predict the next solo performer(s),

and automatically turn the camera to the performer(s) or notify the cameramen.

187

References

[1] Anderson, E., Ed. The Letters of Mozart and his Family, 2nd ed. London:
Macmillan, 1966.

[2] Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T. A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans.
Signal Processing 50, 2 (2002), 174–188.

[3] Bach, F., and Jordan, M. Discriminative training of hidden Markov models
for multiple pitch tracking. In Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2005), pp. 489–492.

[4] Bay, M., and Beauchamp, J. Harmonic source separation using prestored spec-
tra. In Proc. International Conference on Independent Component Analysis and
Blind Source Separation (ICA), LNCS 3889 (2006), pp. 561–568.

[5] Bay, M., Ehmann, A. F., Beauchamp, J. W., Smaragdis, P., and Downie,
J. S. Second fiddle is important too: pitch tracking individual voices in polyphonic
music. In Proc. International Society for Music Information Retrieval Conference
(ISMIR) (2012), pp. 319–324.

[6] Bello, J. P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., and
Sandler, M. B. A tutorial on onset detection in music signals. IEEE Trans. Speech
Audio Process. 13, 5 (2005), 1035–1047.

[7] Boersma, P. Praat, a system for doing phonetics by computer. Glot International
5, 9/10 (2001), 341–345.

[8] Bregman, A. Auditory Scene Analysis: The Perceptual Organization of Sound.
The MIT Press, Cambridge, Massachusetts, 1990.

[9] Burred, J. J., Röbel, A., and Sikora, T. Dynamic spectral envelope modeling
for timbre analysis of musical instrument sounds. IEEE Trans. on Audio, Speech,
and Language Processing 18, 3 (2010), 663–674.

188

[10] Cano, P., Loscos, A., and Bonada, J. Score-performance matching us-
ing HMMs. In Proc. International Computer Music Conference (ICMC) (1999),
pp. 441–444.

[11] Carabias-Orti, J., Virtanen, T., Vera-Candeas, P., Ruiz-Reyes, N.,
and Canadas-Quesada, F. Musical instrument sound multi-excitation model for
non-negative spectrogram factorization. IEEE Journal of Selected Topics in Signal
Processing 5, 6 (2011), 1144–1158.

[12] Casey, M., and Westner, A. Separation of mixed audio sources by indepen-
dent subspace analysis. In Proc. International Computer Music Conference (ICMC)
(2000), pp. 154–161.

[13] Chang, W.-C., Su, A. W. Y., Yeh, C., Robel, A., and Rodet, X. Multiple-
f0 tracking based on a high-order HMM model. In Proc. International Conference
on Digital Audio Effects (DAFx) (2008).

[14] Cherry, E. C. Some experiments on the recognition of speech, with one and two
ears. Journal of the Acoustic Society of America 25 (1953), 975–979.

[15] Chrissochoidis, I. London mozartiana: Wolfgang’s disputed age & early perfor-
mances of allegri’s miserere. The Musical Times 151, 1911 (2010), 8389.

[16] Cont, A. Realtime audio to score alignment for polyphonic music instruments
using sparse non-negative constraints and hierarchical HMMs. In Proc. IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP) (2006),
pp. 245–248.

[17] Cont, A. A coupled duration-focused architecture for real-time music-to-score
alignment. IEEE Trans. Pattern Analysis and Machine Intelligence 32, 6 (2010),
974–987.

[18] Cont, A., Schwarz, D., Schnell, N., and Raphael, C. Evaluation of real-
time audio-to-score alignment. In Proc. International Conference on Music Infor-
mation Retrieval (ISMIR) (2007), pp. 315–316.

[19] Cooke, M., Hershey, J. R., and Rennie, S. Monaural speech separation and
recognition challenge. Computer Speech and Language 24 (2010), 1–15.

[20] Dannenberg, R. B. An on-line algorithm for real-time accompaniment. In Proc.
International Computer Music Conference (ICMC) (1984), pp. 193–198.

189

[21] Davidson, I., Ravi, S., and Ester, M. Efficient incremental constrained clus-
tering. In Proc. ACM Conference on Knowledge Discovery and Data Mining (KDD)
(2007), pp. 240–249.

[22] Davy, M., Godsill, S. J., and Idier, J. Bayesian analysis of polyphonic West-
ern tonal music. Journal of the Acoustical Society of America 119 (2006), 2498–2517.

[23] de Cheveigné, A., and Kawahara, H. Multiple period estimation and pitch
perception model. Speech Commun. 27 (1999), 175–185.

[24] de Cheveigné, A., and Kawahara, H. Yin, a fundamental frequency estimator
for speech and music. Journal of the Acoustical Society of America 111 (2002),
1917–1930.

[25] Depalle, P., Garcia, G., and Rodet, X. Tracking of partials for additive
sound synthesis using hidden markov models. In Proc. IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP) (1993), pp. 225–228.

[26] Dixon, S. Live tracking of musical performances using on-line time warping. In
Proc. International Conference on Digital Audio Effects (DAFx) (Madrid, Spain,
2005).

[27] Doucet, A., de Freitas, N., and Gordon, N., Eds. Sequential Monte Carlo
Methods in Practice. Springer-Verlag, New York, 2001.

[28] Duan, Z., Han, J., and Pardo, B. Song-level multi-pitch tracking by heavily
constrained clustering. In Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (2010), pp. 57–60.

[29] Duan, Z., Han, J., and Pardo, B. Multi-pitch streaming of harmonic sound
mixtures. IEEE Trans. Audio Speech Language Processing (under review).

[30] Duan, Z., and Pardo, B. Aligning improvised music audio with its lead sheet.
In Proc. International Society for Music Information Retrieval Conference (ISMIR)
(2011), pp. 513–518.

[31] Duan, Z., and Pardo, B. Soundprism: an online system for score-informed source
separation of music audio. IEEE Journal of Selected Topics in Signal Processing 5,
6 (2011), 1205–1215.

[32] Duan, Z., and Pardo, B. A state space model for online polyphonic audio-
score alignment. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2011), pp. 197–200.

190

[33] Duan, Z., Pardo, B., and Zhang, C. Multiple fundamental frequency estima-
tion by modeling spectral peaks and non-peak regions. IEEE Trans. Audio Speech
Language Processing 18, 8 (2010), 2121–2133.

[34] Duan, Z., and Zhang, C. A maximum likelihood approach to multiple fundamen-
tal frequency estimation from the amplitude spectrum peaks. In Neural Information
Processing Systems workshop on Music, Brain and Cognition (2007).

[35] Duan, Z., Zhang, Y., Zhang, C., and Shi, Z. Unsupervised single-channel mu-
sic source separation by average harmonic structure modeling. IEEE Trans. Audio
Speech Language Processing 16, 4 (2008), 766–778.

[36] Durrieu, J.-L., Richard, G., and David, B. Singer melody extraction in
polyphonic signals using source separation methods. In Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (2008), pp. 169–
172.

[37] Ellis, D. P. W. Prediction-Driven Computational Auditory Scene Analysis. PhD
thesis, MIT Department of Electrical Engineering and Computer Science, 1996.

[38] Ellis, D. P. W. PLP and RASTA (and MFCC, and inversion) in Matlab, 2005.
online web resource.

[39] Ellis, D. P. W. Beat tracking by dynamic programming. Journal of New Music
Research 36, 1 (2007), 51–60.

[40] Ellis, D. P. W., and Poliner, G. E. Identifying ’cover songs’ with chroma fea-
tures and dynamic programming beat tracking. In Proc. IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP) (2007), pp. 1429–1432.

[41] Emiya, V., Badeau, R., and David, B. Multipitch estimation of quasi-harmonic
sounds in colored noise. In Proc. International Conference on Digital Audio Effects
(DAFx) (2007).

[42] Every, M. R., and Szymanski, J. E. Separation of synchronous pitched notes
by spectral filtering of harmonics. IEEE Trans. Audio Speech Language Processing
14, 5 (2006), 1845–1856.

[43] Ewert, S., and Müller, M. Using score-informed constraints for NMF-based
source separation. In Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (2012), pp. 129–132.

191

[44] Ewert, S., Müller, M., and Grosche, P. High resolution audio synchro-
nization using chroma onset features. In Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2009), pp. 1869–1872.

[45] Fanelli, G., Gall, J., and Van Gool, L. Hough transform-based mouth local-
ization for audio-visual speech recognition. In British Machine Vision Conference
(2009).

[46] Fuhrmann, F. Automatic musical instrument recognition from polyphonic music
audio signals. PhD thesis, Universitat Pompeu Fabra, Barcelona, Spain, 2012.

[47] Galas, T., and Rodet, X. An improved cepstral method for deconvolution of
source-filter systems with discrete spectra: Application to musical sounds. In Proc.
of International Computer Music Conference (ICMC) (1990), pp. 82–84.

[48] Ganseman, J., Mysore, G., Scheunders, P., and Abel, J. Source separa-
tion by score synthesis. In Proc. International Computer Music Conference (ICMC)
(June 2010).

[49] Ganseman, J., Scheunders, P., Mysore, G., and Abel, J. Evaluation of a
score-informed source separation system. In Proc. International Society for Music
Information Retrieval Conference (ISMIR) (2010), pp. 219–224.

[50] Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallett, D., and
Dahlgren, N. The DARPA TIMIT acoustic-phonetic continuous speech corpus
cdrom. NTIS, order number PB01-100354, 1993. now available from LDC.

[51] Ghezzo, M. Solfege, Ear Training, Rhythm, Dictation, and Music Theory: A
Comprehensive Course, 3rd ed. University Alabama Press, 2005.

[52] Goldstein, J. An optimum processor theory for the central formation of the pitch
of complex tones. Journal of the Acoustical Society of America 54 (1973), 1496–
1516.

[53] Goto, M. A real-time music-scene-description system: predominant-f0 estimation
for detecting melody and bass lines in real-world audio signals. Speech Communica-
tion 43, 4 (2004), 311–329.

[54] Goto, M., Hashiguchi, H., Nishimura, T., and Oka, R. Rwc music database:
popular, classical, and jazz music databases. In Proc. International Conference on
Music Information Retrieval (ISMIR) (2002), pp. 287–288.

192

[55] Grubb, L., and Dannenberg, R. B. Automated accompaniment of musical en-
sembles. In Proceedings of the twelfth national conference on Artificial intelligence
(vol. 1) (Menlo Park, CA, USA, 1994), AAAI ’94, American Association for Artifi-
cial Intelligence, pp. 94–99.

[56] Grubb, L., and Dannenberg, R. B. A stochastic method of tracking a vo-
cal performer. In Proc. International Computer Music Conference (ICMC) (1997),
pp. 301–308.

[57] Hainsworth, S. Techniques for the Automated Analysis of Musical Audio. PhD
thesis, University of Cambridge, 2004.

[58] Han, J., and Chen, C.-W. Improving melody extraction using probabilistic latent
component analysis. In Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (2011), pp. 33–36.

[59] Hartmann, W. Pitch, periodicity, and auditory organization. Journal of the
Acoustical Society of America 100, 6 (1996), 3491–3502.

[60] Hu, G., and Wang, D. A tandem algorithm for pitch estimation and voiced
speech segregation. IEEE Trans. Audio Speech Language Processing 18, 8 (2010),
2067–2079.

[61] Hu, K., and Wang, D. An unsupervised approach to cochannel speech separation.
IEEE Trans. Audio Speech Language Processing 21, 1 (2013), 122–131.

[62] Hu, N., Dannenberg, R. B., and Tzanetakis, G. Polyphonic audio matching
and alignment for music retrieval. In Proc. IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA) (New Paltz, New York, USA, 2003),
pp. 185–188.

[63] Jiang, D.-n., Zhang, W., Shen, L.-q., and Cai, L.-h. Prosody analysis and
modeling for emotional speech synthesis. In Proc. IEEE International Conference
on Audio, Speech and Signal Processing (ICASSP) (2005), pp. 281–284.

[64] Jin, Z., and Wang, D. HMM-based multipitch tracking for noisy and reverberant
speech. IEEE Trans. Audio Speech Language Processing 19, 5 (2011), 1091–1102.

[65] Joder, C., Essid, S., and Richard, G. A conditional random field framework
for robust and scalable audio-to-score matching. IEEE Trans. Audio Speech Lan-
guage Processing 19, 8 (2011), 2385–2397.

193

[66] Kameoka, H., Nishimoto, T., and Sagayama, S. A multipitch analyzer based
on harmonic temporal structured clustering. IEEE Trans. on Audio Speech and
Language Processing 15, 3 (2007), 982–994.

[67] Kashino, K., and Murase, H. A sound source identification system for en-
semble music based on template adaptation and music stream extraction. Speech
Communication (1999), 337–349.

[68] Kim, M., and Choi, S. Monaural music source separation: nonnegativity, sparse-
ness, and shift-invariance. In Proc. International Conference on Independent Com-
ponent Analysis and Blind Source Separation (ICA) (2006), pp. 617–624.

[69] Klapuri, A. Multiple fundamental frequency estimation based on harmonicity and
spectral smoothness. IEEE Trans. Speech Audio Processing 11, 6 (2003), 804–815.

[70] Klapuri, A. Multiple fundamental frequency estimation by summing harmonic
amplitudes. In Proc. ISMIR (2006), pp. 216–221.

[71] Klapuri, A. Analysis of musical instrument sounds by source-filter-decay model.
In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP) (2007), pp. 53–56.

[72] Klapuri, A., and Davy, M., Eds. Signal Processing Methods for Music Tran-
scription. Springer, 2006.

[73] Lagrange, M., and Tzanetakis, G. Sound source tracking and formation using
normalized cuts. In Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (2007), pp. 61–64.

[74] Le Roux, J., Kameoka, H., Ono, N., de Cheveigne, A., and Sagayama, S.
Single and multiple f0 contour estimation through parametric spectrogram modeling
of speech in noisy environments. IEEE Trans. Audio Speech Language Processing
15, 4 (2007), 1135–1145.

[75] Lee, H., Largman, Y., Pham, P., and Y., N. A. Unsupervised feature learning
for audio classification using convolutional deep belief networks. In Proc. Advances
in Neural Information Processing Systems (NIPS) (2009).

[76] Lee, K., and Slaney, M. Acoustic chord transcription and key extraction from
audio using key-dependent HMMs trained on synthesized audio. IEEE Trans. Audio
Speech Language Process. 16, 2 (2008), 291–301.

194

[77] Leistikow, R. J., Thornburg, H. D., Smith, Julius O., I., and Berger,
J. Bayesian identification of closely-spaced chords from single-frame stft peaks. In
Proc. International Conference on Digital Audio Effects (DAFx’04) (Naples, Italy,
2004), pp. 228–233.

[78] Levy, M., and Sandler, M. Structural segmentation of musical audio by con-
strained clustering. IEEE Trans. Audio Speech Language Process. 16, 2 (2008), 318–
326.

[79] Li, Y., and Wang, D. Separation of singing voice from music accompaniment for
monaural recordings. IEEE Trans. Audio Speech Language Processing 15, 4 (May
2007), 1475–1487.

[80] Li, Y., Woodruff, J., and Wang, D. Monaural musical sound separation based
on pitch and common amplitude modulation. IEEE Trans. Audio Speech Language
Processing 17, 7 (2009), 1361–1371.

[81] Lyon, R. F. A computational model of binaural locations and separation. In Proc.
International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(1983), pp. 1148–1151.

[82] Maher, R. An approach for the separation of voices in composite musical signals.
PhD thesis, University of Illinois, Urbana-Champaign, 1989.

[83] Maher, R. C., and Beauchamp, J. W. Fundamental frequency estimation
of musical signals using a two-way mismatch procedure. Journal of the Acoustical
Society of America 95, 4 (1994), 2254–2263.

[84] McAulay, R. J., and Quatieri, T. F. Speech analysis/synthesis based on a
sinusoidal representation. IEEE Trans. Acoustics, Speech and Signal Processing 34,
4 (1986), 744–754.

[85] Meddis, R., and O’Mard, L. A unitary model of pitch perception. Journal of
the Acoustical Society of America 102, 3 (1997), 1811–1820.

[86] Montecchio, N., and Cont, A. A unified approach to real time audio-to-score
and audio-to-audio alignment using sequential montecarlo inference techniques. In
Proc. IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2011), pp. 193–196.

[87] Montecchio, N., and Orio, N. A discrete bank approach to audio to score
matching for polyphonic music. In Proc. International Society for Music Information
Retrieval Conference (ISMIR) (Kobe, Japan, 2009), pp. 495–500.

195

[88] Müller, M., Goto, M., and Schedl, M., Eds. Multimodal Music Processing.
Dagstuhl Follow-Ups. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Ger-
many, 2012.

[89] Orio, N., and Dechelle, F. Score following using spectral analysis and hidden
Markov models. In Proc. International Computer Music Conference (ICMC) (2001).

[90] Orio, N., Lemouton, S., and Schwarz, D. Score following: state of the art
and new developments. In Proc. International Conference on New Interfaces for
Musical Expression (NIME) (Montreal, Quebec, Canada, 2003), National University
of Singapore, pp. 36–41.

[91] Orio, N., and Schwarz, D. Alignment of monophonic and polyphonic music to a
score. In Proc. International Computer Music Conference (ICMC) (2001), pp. 155–
158.

[92] Parzen, E. On the estimation of a probability density function and the mode.
Annals of Math. Stats. 33 (1962), 1065–1076.

[93] Pertusa, A., and Inesta, J. M. Multiple fundamental frequency estimation
using Gaussian smoothness. In Proc. IEEE International Conference on Acoustics,
Speech Signal Processing (ICASSP) (2008), pp. 105–108.

[94] Pirker, G., Wohlmayr, M., Petrik, S., and Pernkopf, F. A pitch tracking
corpus with evaluation on multipitch tracking scenario. In Proc. Interspeech (2011),
pp. 1509–1512.

[95] Poliner, G. E., and Ellis, D. P. W. A discriminative model for polyphonic
piano transcription. In EURASIP Journal on Advances in Signal Processing (2007).

[96] Puckette, M. Score following using the sung voice. In Proc. International Com-
puter Music Conference (ICMC) (1995), pp. 199–200.

[97] Radfar, M. H., and M., D. R. Single-channel speech separation using soft mask
filtering. IEEE Trans. Audio Speech Language Process. 15, 8 (2007), 2299–2310.

[98] Rafii, Z., and Pardo, B. Music/voice separation using the similarity matrix. In
Proc. International Society for Music Information Retrieval (ISMIR) (2012).

[99] Rafii, Z., and Pardo, B. Repeating pattern extraction technique (REPET):
a simple method for music/voice separation. IEEE Trans. Audio Speech Language
Process. 21, 1 (2013), 71–82.

196

[100] Raphael, C. Automatic segmentation of acoustic musical signals using hidden
Markov models. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 4
(1999), 360–370.

[101] Raphael, C. A Bayesian network for real-time musical accompaniment. In Proc.
Advances in Neural Information Processing Systems (NIPS) (2001).

[102] Raphael, C. Aligning music audio with symbolic scores using a hybrid graphical
model. Machine Learning 65, 2-3 (2006), 389–409.

[103] Raphael, C. A classifier-based approach to score-guided source separation of mu-
sical audio. Computer Music Journal 32 (March 2008), 51–59.

[104] Reis, G., Fonseca, N., and Ferndandez, F. Genetic algorithm approach to
polyphonic music transcription. In Proc. IEEE International Symposium on Intel-
ligent Signal Processing (2007).

[105] Röbel, A., Zivanovic, M., and Rodet, X. Signal decomposition by means of
classification of spectral peaks. In Proc. International Computer Music Conference
(ICMC) (2004), pp. 446–449.

[106] Rodet, X. Musical sound signal analysis/synthesis: Sinusoidal+residual and el-
ementary waveform models. In IEEE Time-Frequency and Time-Scale Workshop
(TFTS97) (1997).

[107] Roweis, S. One microphone source separation. In Proc. Advances in Neural Infor-
mation Processing Systems (NIPS) (2001), pp. 15–19.

[108] Ryynanen, M., and Klapuri, A. Polyphonic music transcription using note
event modeling. In Proc. IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA) (2005), pp. 319–322.

[109] Saito, S., Kameoka, H., Takahashi, K., Nishimoto, T., and Sagayama,
S. Specmurt analysis of polyphonic music signals. IEEE Trans. Speech Audio Pro-
cessing 16, 3 (2008), 639–650.

[110] Schnupp, J., Nelken, I., and King, A. Auditory Neuroscience. MIT Press,
2011.

[111] Serra, J., Serra, X., and Andrzejak, R. G. Cross recurrence quantification
for cover song identification. New Journal of Physics 11 (2009).

197

[112] Sha, F., and Saul, L. Real-time pitch determination of one or more voices by
nonnegative matrix factorization. In Proc. Advances in Neural Information Process-
ing Systems (NIPS) (2005), pp. 1233–1240.

[113] Shao, Y., Srinivasan, S., Jin, Z., and Wang, D. A computational auditory
scene analysis system for speech segregation and robust speech recognition. Com-
puter Speech and Language 24 (2010), 77–93.

[114] Simon, I., Morris, D., and Basu, S. Mysong: automatic accompaniment gen-
eration for vocal melodies. In Proc. ACM SIGCHI (2008).

[115] Smith, J., and Serra, X. Parshl: an analysis/synthesis program for non-
harmonic sounds based on a sinusoidal representation. In Proc. Internetional Com-
puter Music Conference (ICMC) (1987).

[116] Springer, J., Duan, Z., and Pardo, B. Approaches to multiple concurrent
species bird song recognition. In The 2nd International Workshop on Machine Lis-
tening in Multisource Environments, ICASSP (2013).

[117] Talkin, D. A robust algorithm for pitch tracking (RAPT). In Speech Coding and
Synthesis, W. Kleijn, , and K. Paliwal, Eds. Elsevier Science B.V., 1995, pp. 495–
518.

[118] Thomas, V., Fremerey, C., Damm, D., and Clausen, M. Slave: a score-
lyrics-audio-video-explorer. In Proc. International Society for Music Information
Retrieval Conference (ISMIR) (2009).

[119] Thornburg, H., and Leistikow, R. A new probabilistic spectral pitch estima-
tior: extract and mcmc-approximate strategies. Lecture Notes in Computer Science
3310/2005 (2005), 41–60.

[120] Tolonen, T., and Karjalainen, M. A computationally efficient multipitch
analysis model. IEEE Trans. on Speech and Audio Processing 8, 6 (2000), 708–716.

[121] Tzanetakis, G., Essl, G., and Cook, P. Automatic musical genre classification
of audio signals. In Proc. International Symposium on Music Information Retrieval
(ISMIR) (2001), pp. 293–302.

[122] Vercoe, B. The synthetic performer in the context of live performance. In Proc.
International Computer Music Conference (ICMC) (1984), pp. 199–200.

[123] Vincent, E. Musical source separation using time-frequency source priors. IEEE
Trans. Audio Speech Language Processing 14, 1 (2006), 91–98.

198

[124] Vincent, E., Gribonval, R., and Févotte, C. Performance measurement in
blind audio source separation. IEEE Trans. Audio Speech Language Processing 14,
4 (July 2006), 14621469.

[125] Vincent, E., Gribonval, R., and M.D., P. BSS Oracle Toolbox Version 2.1.

[126] Vincent, E., and Plumbley, M. D. Efficient Bayesian inference for harmonic
models via adaptive posterior factorization. Neurocomputing 72 (December 2008),
79–87.

[127] Virtanen, T. Algorithm for the separation of harmonic sounds with time-
frequency smoothness constraint. In Proc. International Conference on Digital Au-
dio Effects (DAFx) (2003), pp. 35–40.

[128] Virtanen, T. Sound source separation in monaural music signals. PhD thesis,
Tampere University of Technology, 2006.

[129] Virtanen, T. Monaural sound source separation by nonnegative matrix factoriza-
tion with temporal continuity and sparseness criteria. IEEE Trans. Audio Speech
Language Processing 15, 3 (March 2007), 1066–1074.

[130] Viste, H., and Evangelista, G. A method for separation of overlapping partials
based on similarity of temporal envelopes in multi-channel mixtures. IEEE Trans.
Audio Speech and Language Process. 14, 3 (2006), 1051–1061.

[131] Wagstaff, K., and Cardie, C. Clustering with instance-level constraints. In
Proc. International Conference on Machine Learning (ICML) (2000), pp. 1103–
1110.

[132] Wagstaff, K., Cardie, C., Rogers, S., and Schroedl, S. Constrained k-
means clustering with background knowledge. In Proc. International Conference on
Machine Learning (ICML) (2001), pp. 577–584.

[133] Wang, B., and Plumbley, M. Musical audio stream separation by non-negative
matrix factorization. In Proc. DMRN Summer Conference (2005), pp. 23–24.

[134] Wang, D., and Brown, G., Eds. Computational Auditory Scene Analysis: Prin-
ciples, Algorithms, and Applications. IEEE Press/Wiley-Interscience, 2006.

[135] Wang, Y., Lin, J., Chen, N., and Yuan, W. Improved monaural speech seg-
regation based on computational auditory scene analysis. EURASIP Journal on
Audio, Speech, and Music Processing 2013, 2 (2013).

199

[136] Wohlmayr, M., Stark, M., and Pernkopf, F. A probabilistic interaction
model for multipitch tracking with factorial hidden Markov models. IEEE Trans.
Audio Speech Language Processing 19, 4 (2011), 799–810.

[137] Woodruff, J., Li, Y., and Wang, D. Resolving overlapping harmonics for
monaural musical sound separation using pitch and common amplitude modulation.
In Proc. International Conference on Music Information Retrieval (ISMIR) (2008),
pp. 538–543.

[138] Woodruff, J., Pardo, B., and Dannenberg, R. Remixing stereo music with
score-informed source separation. In Proc. International Conference on Music In-
formation Retrieval (ISMIR) (2006), pp. 314–349.

[139] Woodruff, J., and Wang, D. Binaural localization of multiple sources in rever-
berant and noisy environments. IEEE Trans. Audio Speech Language Process. 20,
5 (2012), 1503–1512.

[140] Wu, M., Wang, D., and Brown, G. J. A multipitch tracking algorithm for
noisy speech. IEEE Trans. Speech Audio Process. 11, 3 (2003), 229–241.

[141] Yeh, C., Röbel, A., and Rodet, X. Multiple fundamental frequency estimation
of polyphonic music signals. In Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2005), pp. 225–228.

[142] Yeh, C., Röbel, A., and Rodet, X. Multiple fundamental frequency estimation
and polyphony inference of polyphonic music signals. IEEE Trans. Audio Speech and
Language Process. 18, 6 (2010), 1116–1126.

[143] Yılmaz, O., and Rickard, S. Blind separation of speech mixtures via time-
frequency masking. IEEE Trans. Signal Process. 52, 7 (2004), 1830–1847.

200

APPENDIX A

Pitch and Fundamental Frequency

Pitch is a perceptual attribute of sound. It is defined through psychoacoustic ex-

periments as the frequency of a sinusoidal wave which is perceived as having the same

frequency height as the target sound [59]. Pitch is subjective. Different human listen-

ers, or even the same listener in different conditions may have inconsistent perceptions on

pitch. For periodic sounds, these perceptions are usually consistent, while for non-periodic

sounds, they are often inconsistent. Therefore, it is only meaningful to talk about pitch

for periodic sounds.

Fundamental frequency, abbreviated as F0, is an objective physical term. It is defined

as the reciprocal of the period of a sound, hence only defined for periodic or nearly

periodic sounds. For most sounds that have a consistent pitch perception, F0 matches

pitch. Therefore, in computer science and engineering fields such as music information

retrieval, people often do not distinguish pitch and F0.

201

APPENDIX B

Harmonic, Quasi-harmonic and Inharmonic Sounds

By Fourier analysis, a periodic sound can be viewed as a summation of sinusoids

with different frequencies and amplitudes. In the frequency domain, these sinusoids form

different spectral patterns. It is the spectral pattern that classifies periodic sounds into

harmonic or quasi-harmonic.

Harmonic sounds are the sounds whose dominant frequency components (significant

spectral peaks) are approximately equally spaced, and the gap between adjacent peaks

equals the F0 (see Figure B.1-(a) and (b)). These spectral peaks appear at integer multi-

ples (harmonic positions) of the F0, and they form harmonics. Harmonics have different

amplitudes, and their relative amplitudes form a harmonic structure. It is the harmonic

structure that strongly determines the timbre of a harmonic sound. Some harmonics

may have too small amplitudes to be recognized, e.g. even harmonics of the clarinet. In

this case, they are called “missing harmonics”. Occasionally, the first harmonic, i.e. the

fundamental can also be missing, without interfering the pitch perception [110]. This is

called “the missing fundamental” situation. Many musical instruments (e.g. violin, piano,

vocal, etc.) produce harmonic sounds and they are called harmonic instruments.

Quasi-harmonic sounds are also nearly periodic, however, their spectra do not have a

harmonic structure. Figure B.1-(c) shows a marimba sound. The waveform has a clear

period and the sound has a consistent pitch perception. However, many harmonics are

missing and many spectral peaks do not appear at harmonic positions. Instruments that

202

0 10 20 30 40
−1

−0.5

0

0.5

1

Time (ms)

A
m

pl
itu

de

0 1000 2000 3000 4000 5000

−20

0

20

40

60
261.0Hz

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

(a) Harmonic sound by clarinet C4

0 10 20 30 40
−1

−0.5

0

0.5

1

Time (ms)

A
m

pl
itu

de

0 1000 2000 3000 4000 5000

−20

0

20

40

60

259.7Hz

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

(b) Harmonic sound by oboe C4

0 10 20 30 40
−1

−0.5

0

0.5

1

Time (ms)

A
m

pl
itu

de

0 5000 10000

−20

0

20

40

60
1060.0Hz1.0

2.0 3.4
6.1

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

(c) Quasi-harmonic sound by marimba

0 10 20 30 40
−1

−0.5

0

0.5

1

Time (ms)

A
m

pl
itu

de

0 5000 10000

−20

0

20

40

60

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

(d) Inharmonic sound by gong

Figure B.1. Comparisons of harmonic, quasi-harmonic and inharmonic
sounds. Significant peaks in each magnitude spectrum are marked by cir-
cles. They appear at harmonic positions in harmonic sounds, but not al-
ways in quasi-harmonic sounds. Clarinet and oboe have different harmonic
structures for the same note.

203

produce quasi-harmonic sounds include pitched percussive instruments, e.g. marimba,

tabla, timpani, tuned triangle, vibraphone, xylophone, etc.

Inharmonic sounds refer to non-periodic sounds. Figure B.1-(d) shows a gong sound.

It can be seen that the waveform is not periodic, nor does the spectrum have a harmonic

structure. Non-pitched percussive instruments like drums, gong and tambourine are in

this category.

Table B.1 classifies Western musical instruments into the three categories. It can be

seen that harmonic instruments are the most popular ones in music.

Table B.1. Classification of Western musical instruments into harmonic,
quasi-harmonic and inharmonic categories.

Sounds Instrument family Instruments

Harmonic

Woodwind Flute, oboe, clarinet, bassoon, saxophone
Brass Trumpet, horn, trombone, tuba

Arco string Violin, viola, cello, double bass
Pluck string Piano, guitar, harp, celesta

Vocal Voiced phonemes
Quasi-harmonic Pitched percussive Timpani, marimba, vibraphone, xylophone

Inharmonic Non-pitched percussive Drums, cymbal, gong, tambourine

	ABSTRACT
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Problem Statement
	1.3. Related Areas
	1.4. Summary of Contributions
	1.5. Broader Impact

	Part 1. Analyzing the Music Audio Scene without A Written Score
	Chapter 2. Multi-pitch Estimation
	2.1. Introduction
	2.2. Estimating F0s Given the Polyphony
	2.3. Estimating the Polyphony
	2.4. Postprocessing Using Neighboring Frames
	2.5. Computational Complexity
	2.6. Experiments
	2.7. Conclusions

	Chapter 3. Multi-pitch Streaming
	3.1. Introduction
	3.2. Streaming as Constrained Clustering
	3.3. Algorithm
	3.4. Timbre Features
	3.5. Experiments
	3.6. Conclusions

	Chapter 4. Multi-pitch Estimation and Streaming of Multi-talker Speech
	4.1. Differences between Music and Speech
	4.2. Multi-pitch Estimation Experiments
	4.3. Multi-pitch Streaming Experiments
	4.4. Conclusions

	Part 2. Analyzing the Music Audio Scene with A Written Score
	Chapter 5. Audio-score Alignment
	5.1. Introduction
	5.2. A Hidden Markov Process for Score Following
	5.3. Inference by Particle Filtering
	5.4. Algorithm Analysis
	5.5. Experiments
	5.6. Conclusions

	Chapter 6. Score-informed Source Separation
	6.1. Introduction
	6.2. Refining Score Pitches
	6.3. Reconstruct Source Signals
	6.4. Experiments
	6.5. Conclusions

	Chapter 7. Applications
	7.1. Online Application: Soundprism
	7.2. Offline Application: Interactive Music Editing

	Chapter 8. Conclusions
	8.1. Limitations
	8.2. Future Work

	References
	Appendix A. Pitch and Fundamental Frequency
	Appendix B. Harmonic, Quasi-harmonic and Inharmonic Sounds

