A Maximum Likelihood Approach to Multiple F0 Estimation From the Amplitude Spectrum Peaks

Zhiyao Duan, Changshui Zhang Department of Automation Tsinghua University, China duanzhiyao00@mails.tsinghua.edu.cn

Music, Mind and Cognition workshop of NIPS07 Whistler, Canada, Dec. 7, 2007

Neural Information Processing Systems Conference

Multiple F0 Estimation

- A sound with mixed tones, tone 1 (F3), tone 2 (C4)
 - Estimate the polyphony (number of tones)
 - Estimate the frequencies of these tones
- How do musicians do this?
 - Analyze the frequency components by ears
 - Infer the frequencies by the brain
- Can computers also do this?
 - Analyze the frequency components by STFT
 - Infer the frequencies by a Maximum Likelihood method

Problem Formulation

- Parameters to be estimated
 - Number of F0s: N
 - FOs: f_0^1, \cdots, f_0^N
- Observation
 - frequencies and amplitudes of the peaks in the amplitude spectrum

4000

Likelihood Function

$$\mathcal{L}(\theta) = p(f_1, A_1, \cdots, f_K, A_K | f_0^1, \cdots, f_0^N)$$

$$= \sum_{I_1, \cdots, I_K} p(f_1, A_1, I_1, \cdots, f_K, A_K, I_K | f_0^1, \cdots, f_0^N)$$

$$\stackrel{(assum.)}{=} \sum_{I_1, \cdots, I_K} \prod_{i=1}^K p(f_i, A_i, I_i | f_0^1, \cdots, f_0^N)$$

$$= \prod_{i=1}^K \sum_{I_i} p(f_i, A_i, I_i | f_0^1, \cdots, f_0^N)$$

• A peak

- "True": $I_i = 1$: generated by a harmonic
- "False": $I_i = 0$: caused by detection errors

Likelihood Function (a peak)

$$\sum_{I_i} p\left(f_i, A_i, I_i | f_0^1, \cdots, f_0^N\right)$$

- $= \{ p(f_i, A_i | I_i = 1; f_0^1, \dots, f_0^N) p(I_i = 1) + (f_i, A_i | I_i = 0) p(I_i = 0) \}$ "true" peak part "false" peak part
- Learn the parameters from the training data
 - Training data: the monophonic note samples
 - Easy to know whether a peak is "true" or "false"

•
$$p(I_i = 1) = 0.964$$

True Peak Part

$$\left\{ p\left(f_{i}, A_{i} | I_{i} = 1; f_{0}^{1}, \cdots, f_{0}^{N}\right) p\left(I_{i} = 1\right) + \left(f_{i}, A_{i} | I_{i} = 0\right) p\left(I_{i} = 0\right) \right\}$$

$$p\left(f_{i}, A_{i} | I_{i} = 1; f_{0}^{1}, \cdots, f_{0}^{N}\right) \stackrel{(assum.)}{=} p\left(f_{i}, A_{i} | f_{0}^{l(i)}\right)$$
$$= p\left(A_{i} | f_{i}, f_{0}^{l(i)}\right) p\left(f_{i} | f_{0}^{l(i)}\right)$$
amplitude frequency

- Assume that each "true" peak is generated by only one F0
 - 50dB + 30dB = 50.8dB

True Peak Part (amplitude)

$$p\left(A_{i}|f_{i}, f_{0}^{l(i)}\right) = p\left(A_{i}|f_{i}, h_{i}(f_{0}^{l(i)})\right)$$

Replace F0 with hi: harmonic number of the peak i

	A	f	f_0	h	d
A	1.00	-0.72	-0.04	-0.61	0.00
f	-0.72	1.00	0.42	0.55	-0.00
f_0	-0.04	0.42	1.00	-0.40	0.01
h	-0.61	0.55	-0.40	1.00	-0.01
d	0.00	-0.00	0.01	-0.01	1.00

- Estimate $p\left(A_i, f_i, h_i(f_0^{l(i)})\right)$ from the training data
 - A Parzen window (11*11*5)

True Peak Part (frequency)

 Convert the peak frequency into the frequency deviation of the peak from the nearest harmonic position of F0

$$p\left(f_{i}|f_{0}^{l(i)}\right) \stackrel{(assum.)}{=} p\left(d_{i}|f_{0}^{l(i)}\right)$$
$$\stackrel{(assum.)}{=} p\left(d_{i}\right)$$

- Estimated from training data
- Symmetric, long tailed, not spiky
- A Gaussian Mixture Model (4 kernels)

False Peak Part

$$\left\{ p\left(f_{i}, A_{i} | I_{i} = 1; f_{0}^{1}, \cdots, f_{0}^{N} \right) p\left(I_{i} = 1\right) + \left(f_{i}, A_{i} | I_{i} = 0\right) p\left(I_{i} = 0\right) \right\}$$

 Estimated from training data

- A Gaussian distribution
 - Mean (92.7, 20.3)
 - covariance $\begin{pmatrix} 208.5 & -43.0 \\ -43.0 & 41.0 \end{pmatrix}$

Log frequency (MIDI number)

Estimating the Polyphony

- The likelihood will increase with the number of F0s (overfitting)
- A weighted Bayesian Information Criteria (BIC)
 - K: number of peaks; N: polyphony

$$BIC = \ln p \left(f_1, A_1, \cdots, f_K, A_K | f_0^1, \cdots, f_0^N \right) - 2K^{0.45} \cdot \frac{1}{2} N \ln \left(2K \right)$$

Log likelihood weight BIC penalty
 Search the F0s and the polyphony to maximize BIC

- A combinational explosion problem
- Greedy search: Start from N=1; add F0 one by one

Experiments (1)

- Acoustic materials: 1500 note samples from Iowa music database
 - 18 wind and arco-string instruments
 - Pitch range: C2 (65Hz) B6 (1976Hz)
 - Dynamic: mf, ff
- Training data: 500 notes
- Testing data: generated using the other 1000 notes
 - Mixed with equal mean square level and no duplication in pitch
 - 1000 mixtures each for polyphony 1, 2, 3 and 4.

Experiments (2)

Polyphony estimation

Thank you! Welcome to my poster!