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Abstract

This paper presents a Maximum Likelihood approach to multiple fundamental fre-
quency (F0) estimation in each frame of music signals in the frequency domain.
The frequencies and amplitudes of the spectral peaks are viewed as observations,
and the F0s are viewed as parameters to be estimated. The proposed method con-
siders the potential errors in the peak detection algorithm and treats each peak
as “true” and “false” separately. The likelihood models of the “true” and “false”
peaks are learned from the monophonic training data, with the assumption that the
statistics of the peaks in monophonic and polyphonic signals are similar. The pro-
posed method also incorporates a rectified Bayesian Information Criteria (BIC) to
estimate the number of the parameters, i.e. the polyphony. Evaluation is held on
randomly mixed chords, which are generated from the previously unseen mono-
phonic tones. Experimental results show the feasibility of this method.

1 Introduction

Multiple fundamental frequency (F0) estimation in polyphonic music signals, including estimating
the number of concurrent sounds and their F0s, has been generally considered as one of the cen-
tral problems in many music signal analysis applications, including automatic transcription, source
separation and music information retrieval. Contrary to its importance, however, many conventional
methods fell clearly behind human’s ability in both accuracy and flexibility.

In recent years, some new methods with different techniques have been proposed. De Cheveigné [1],
Tolonen and Karjalainen [2] proposed temporal cancelation methods based on modeling the human
auditory system. Klapuri [3] also used auditory filterbanks as the front end, but estimated the F0s in
an iterative spectral subtraction fashion. Poliner and Ellis [4] viewed the multiple F0 estimation as a
multi-class classification problem, where each note in the piano is a class. Kashino and Murase [5]
applied a Bayesian probability network to integrate musical context to address this problem. Davy,
Godsill and Idier [6] proposed a generative signal model and employed reversible jump Markov
Chain Monte Carlo (MCMC) to estimate the parameters including the F0s and polyphony. Goto [7],
modeled the amplitude spectrum using mixture models and used a multiple-agent architecture to de-
cide the birth and death of F0s. Kameoka, Nishimoto and Sagayama [8] also employed probabilistic
spectral models and used some information criteria to decide the number of concurrent sounds.

However, all these methods above model the whole data (signal or spectrum), which is high dimen-
sional and contains much useless information and noise. Some reductions of the data should simplify
the problem and reduce irrelevant information. Goldstein [9] firstly proposed the method of prob-
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abilistic modeling the spectral peaks instead of the whole spectrum. He modeled the deviation of
peak frequencies with a Gaussian but left the amplitude information unused. Thornburg, Leistikow
and Berger [10] furthered this idea and incorporated the amplitude information of the peaks, aiming
at melody extraction and musical onset detection. However, neither of them addressed the scenario
of multiple pitches.

In this paper, we further the spectral peaks modeling idea into the multiple F0s scenario. We view
multiple F0 estimation as a Maximum Likelihood estimation problem in the frequency domain in
each frame, where the F0s are the parameters and the frequencies and amplitudes of the peaks are
the observation. The proposed method incorporates the possibility of the peak detection errors into
the likelihood function, and models the “true” and “false” peaks separately. The parameters of the
models are learned from the monophonic training data, with the assumption that the statistics of
the peaks in monophonic and polyphonic signals are similar. For estimating the number of param-
eters, i.e. the polyphony, a weighted Bayesian Information Criteria (BIC) is used. Experimental
results on chords with polyphony ranging from 1 to 4, which are generated from previously unseen
monophonic tones, show the feasibility of this method.

2 Modeling

Given a frame of polyphonic music, the multiple F0 estimation can be seen as a parameter estimation
problem, where the spectrum is the observation and the F0s are the parameters. Here suppose the
number of F0s is N , a Maximum Likelihood model can be formulated as:(
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where f1
0 , · · · , fN

0 are the N logarithmic fundamental frequencies; F is the possible range of F0s; O
represents the observation spectrum; f1, · · · , fK are the K logarithmic frequencies of the peaks in
the amplitude spectrum, and A1, · · · , AK are their logarithmic amplitudes. In this paper, frequencies
and amplitudes are all handled in the logarithmic scale (MIDI number and dB, respectively) 1 , for
both ease of manipulation and accordance with human perception.

The reduction of the observation from the spectrum to the frequencies and amplitudes of the peaks
has several reasons: First, in terms of human perception, phase spectrum has little effect while
peaks in the amplitude spectrum have the very importance. Reserving only the peaks just cause
little distortion of a harmonic sound [14]. Second, these peaks contain the most useful information
for pitch estimation, because peaks appear and only appear at the integral times of the fundamental
frequencies due to the physical property of harmonic instruments. Third, this reduction reduces the
dimension of the observation significantly, and will make the parameter estimation much easier.

2.1 The Likelihood function

Ideally, peaks, representing the harmonics, are entirely caused by the F0s. However, some “false”
peaks caused by other reasons, such as noise, inherent limitations of the peak detection method and
overlapping partials of different F0s, may also be detected. So far there is not any peak detection
method that can detect all the “true” peaks and withdraw all the “false” peaks. Therefore, the possi-
bility of being one of the two cases for each detected peak should be considered. In our likelihood
function L (θ), Ii = 1 and Ii = 0 represent that peak i is “true” and “false”, respectively.
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1MIDI number = 69+12× log2(Hz/440); dB = 20× log10(Linear amplitude)
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From Eq.(4) to Eq.(5), the conditional independence of the peaks given F0s is assumed. This is
reasonable for “true” peaks, because they are caused only by the F0s. For “false” peaks, because
they can be influenced by other peaks, this assumption is not true. But it is commonly used in the
spectral probabilistic modeling literature [6] for the ease of manipulation.

p
(
Ii|f1

0 , · · · , fN
0

)
in Eq.(7) represents the probability of a detected peak is “true” or “false”, i.e. the

peak detection accuracy, given F0s. Although this accuracy may be influenced by the number and
values of F0s, this influence is neglectable compared with the inherent property of the peak detection
algorithm. Therefore, from Eq.(7) to Eq.(8), the independence between Ii and F0s is assumed.

As the prior information, p (Ii) is learned from the monophonic training data. In each frame of the
training data, YIN [11], a robust single F0 detection algorithm, is used to detect the exact F0 around
the labeled note name. Then the deviation of a detected peak from the nearest harmonic position of
the F0 is calculated. If the deviation is less than half a semitone range, the peak is treated “true”,
otherwise “false”. The portion of the “true” peaks is 0.964 and is used as p (Ii = 1).

2.2 Modeling the true peaks

A “true” peak may be generated by only one F0, or several F0s when they all have a harmonic
at the peak position. In the later case, the linear amplitude of the peak is the summation of those
of all the overlapping harmonics if they have the same phase, however, the logarithmic amplitude
approximates the maximum of those of the harmonics. For example, a 50 dB harmonic overlapping
a 30 dB one will cause at most a 50.8 dB peak. When the two harmonics have the same amplitude
and phase, the logarithmic amplitude of the peak will have the biggest increase of 6 dB, but this case
is rather rare and the amplitudes of most peaks are higher than 20 dB. Therefore, it is reasonable to
assume that each peak is mainly generated by one F0, and is approximately independent from the
other F0s. Then the likelihood of a “true” peak given F0s can be deduced as:
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where l (i) ∈ {1, · · · , N}, is a function of i and means that peak i is mainly generated by f
l(i)
0 . Note

that it also implicates the condition Ii = 1. In practice, f
l(i)
0 is selected from the supposed N F0s to

maximize Eq.(10). In Eq.(11) the likelihood of “true” peak i is split into two parts: the conditional
distribution of amplitude and frequency, respectively.

In modeling p
(
Ai|fi, f
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0

)
, we change the conditions to other equivalent conditions:
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where hi(f
l(i)
0 ) = 2(fi−f

l(i)
0 )/12, is the harmonic number of peak i, given its fundamental f

l(i)
0 .
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Table 1: Correlation coefficients between several variables of the “true” peaks of the monophonic
training data. A, f , f0 and h are the logarithmic amplitude, logarithmic frequency, logarithmic
fundamental frequency and harmonic number of a peak, respectively. d is the logarithmic frequency
deviation of a peak from the nearest harmonic position of its fundamental frequency.

A f f0 h d
A 1.00 -0.72 -0.04 -0.61 0.00
f -0.72 1.00 0.42 0.55 -0.00
f0 -0.04 0.42 1.00 -0.40 0.01
h -0.61 0.55 -0.40 1.00 -0.01
d 0.00 -0.00 0.01 -0.01 1.00

The reason of the replacement of the conditions is that Ai is much more correlated with hi(f
l(i)
0 )

than with f
l(i)
0 , because higher harmonics tend to have lower amplitudes while any fundamental fre-

quency can have harmonics with very diverse amplitudes. This conclusion is proved by the statistics
of the training data. In Table 1, it can be seen that the correlation between A and h is much stronger
than that between A and f0. Therefore, the joint probability density function p

(
Ai, fi, hi(f

l(i)
0 )

)
is

more convergent than p
(
Ai, fi, f

l(i)
0

)
and hence easier to learn.

p
(
Ai, fi, hi(f

l(i)
0 )

)
is estimated using Parzen window method, because it is very hard to give a

parametric model. A 11× 11× 5 Gaussian window with variance 4 is used to serve as a smoothing
function and the parameters are selected without tuning. Figure 1 shows the three 2-D marginal
density of the 3-D joint probability density function.

(a) p (A, f) (b) p (A, h) (c) p (f, h)

Figure 1: The three marginal density of the joint probability density function p
(
Ai, fi, hi(f

l(i)
0 )

)
,

which is learned from the monophonic training data using Parzen window method.

In modeling p
(
fi|f l(i)

0

)
, the second part of Eq.(11), we have:

p
(
fi|f l(i)

0

)
(assum.)

= p
(
di|f l(i)

0

)
(14)

(assum.)
= p (di) (15)

di = fi − f
l(i)
0 −

[
fi − f

l(i)
0

]
(16)

where [·] denotes rounding to the nearest integer, and di is the frequency deviation in MIDI number
of peak i from the nearest harmonic position of the given F0. Note that it always lies in [−0.5, 0.5],
i.e. a semitone range.

In Eq.(16), it is assumed that there always be a detected “true” peak in the semitone range around any
harmonic position of its F0, so the integration of p

(
fi|f l(i)

0

)
in each semitone range equals to 1, and

the probability space of fi is divided into each semitone range. With this assumption,
[
fi − f

l(i)
0

]
is

constant with respect to fi, therefore, fi and di have the same distribution with only different aver-
age. This assumption is not true for some instruments, such as the clarinet, which has undetectable
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peaks around some even harmonic positions, however, it is acceptable by most instruments and can
be mostly assured by loosening the detection conditions in the peak detection algorithm. In Eq.(15),
the frequency deviation di is assumed to be independent from f

l(i)
0 . This assumption is proved by

the statistics in the training data, including both the small correlation coefficient between f0 and d

in Table 1, and the similar shape of the conditional densities p
(
di|f l(i)

0

)
in Figure 2(a)-(d).

Thus the normalized histogram of di is calculated using all the “true” peaks in the training data and
plotted in Figure 2(e). It can be seen that this distribution is symmetric about zero, a little long tailed
but not very spiky. A Gaussian Mixture Model (GMM) with four kernels is used to estimate this
distribution. The probability density of the kernels and the whole is also plotted in Figure 2(e). The
nearly concentric characteristics of the kernels shows the symmetry the distribution.
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Figure 2: Illustration of modeling the frequency deviation of “true” peaks. The horizontal axis
is the deviation in MIDI number, and the vertical axis is the probability density. (a)-(d) plot the
conditional density, given the condition of a fundamental frequency range. (e) plots the density
without this condition, and also plots the density of the Gaussian Mixture Model (four kernels in the
thin curve and the whole in the bold curve), which is used to fit the deviation’s distribution.

2.3 Modeling the false peaks

A “false” peak is that which is not generated by any F0s but detected by the peak detection algorithm.
In monophonic training data, it is easy to classify these peaks, because they lie outside the semitone
range of the nearest harmonic position of their F0s. These peaks are collected and used to estimate
p (fi, Ai|Ii = 0) in Eq.(9). The shape of this probability density is plotted in Figure 3. It is a
somewhat Gaussian-like distribution. Because the prior probability of “false” peaks is only 0.036,
there is no need to model this density very precisely. Thus a 2-D Gaussian distribution is used here,

whose means and covariance are calculated to be (92.7, 20.3) and
(

208.5 −43.0
−43.0 41.0

)
.

2.4 Model selection

So far the modeling of each part of Eq.(9) is done, but the number of F0s is still not estimated. Note
that in Eq.(10), f

l(i)
0 is selected from the supposed F0s to maximize the “true” peak part likelihood

of peak i, and in Eq.(9) the change of supposed F0s only causes the change of the “true” peak
part likelihood. Therefore, if one more F0 is added to the existing supposed F0s, the “true” part
likelihood will increase and cause the whole likelihood increase:

p(f1, A1, · · · , fK , AK |f1
0 , · · · , fN

0 ) ≤ p(f1, A1, · · · , fK , AK |f1
0 , · · · , fN

0 , fN+1
0 ) (17)

This is the typical overfitting problem of Maximum Likelihood method and is usually alleviated by
applying some model selection criteria. Here a rectified Bayesian Information Criteria (BIC) [12] is
adopted. The original model penalization part is weighted by 2K0.45, which is found suitable in our
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Figure 3: Illustration of the probability density of p (fi, Ai|Ii = 0), which is calculated from the
“false” peaks of the training data. The contours of the density is plotted at the bottom of the figure.

Table 2: Algorithm flow

Training
1. Short time fourier transform (STFT) and peak detection;
2. Collect the “true” and “false” peaks;

3. Calculate p (Ii), p
(
Ai|fi, f

l(i)
0

)
, GMM parameters of p (di), and Gaussian parameters of

p(fi, Ai|Ii = 0).

Testing
1. Short time fourier transform (STFT) and peak detection;
2. Set N = 1, calculate and store the predominant fundamental, f1

0 , which maximizes Eq. (3);
3. N = N + 1;
4. Calculate and store fN

0 , which maximizes Eq. (3);
5. Repeat 3-4 until N = 10;
6. Select a value for N which maximizes Eq. (18). The estimated F0s are f1

0 , · · · , fN
0 .

problem. Then the number of F0s and their frequencies are searched to maximize the BIC.

BIC = ln p
(
f1, A1, · · · , fK , AK |f1

0 , · · · , fN
0

)− 2K0.45 · 1
2
N ln (2K) (18)

3 Algorithm

In the proposed method, peak detection is the fundamental step. Here the peak detection algorithm
in [13] is adopted. Basically, the smoothed amplitude envelope is calculated by convolving the
amplitude spectrum with a moving Gaussian filter. Then the local maxima, which are higher than
the envelope for a threshold (e.g. 8 dB) and whose amplitudes are also not lower than the global
maximum for 50 dB, are detected as peaks. Finally, the peak amplitudes and frequencies are refined
by quadratic interpolation [14]. The thresholds (e.g. 8 dB, 50 dB etc.) are the same for both training
and testing data, to make the causes of “false” peaks as similar as possible.

Note that this Maximum Likelihood modeling tends to have the half F0 errors, because half F0s can
have the same BIC value as the true F0s. In order to eliminate these errors and reduce the search
space, the F0s are searched only around the 5 peaks who have lowest frequencies, and 5 peaks who
have highest amplitudes. The search range is two semitones around these peaks and the step is 0.01
peak frequencies. Even though, the size of the search space is a combinational explosion problem
when N is big. Here a greedy search strategy which starts from N = 1 is adopted. The whole
algorithm flow including the training phase and testing phase is illustrated in Table 2.
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4 Experiment

The proposed algorithm was evaluated on randomly mixed chords. The acoustic material consisted
of note samples from the University of Iowa website 2. There were in total 1500 note samples of
dynamic “mf” and “ff” from 18 wind and arco string instruments with pitch ranging from C2 (65Hz,
MIDI number 36) to B6 (1976Hz, MIDI number 95). Some of them had vibrato. 500 samples were
randomly selected as the training data, and the others were randomly mixed with equal mean-square
levels and no duplication in pitch into chords as the testing data. 1000 mixtures of one, two, three
and four sounds were generated, totalling 4000 testing cases.

For both training and testing data, the sampling rate was 44.1 kHz and the frame length and hop size
was 93ms and 46 ms, respectively. In training, all frames of each sample were used to detect and
collect the peaks. In testing, one frame at the middle part of each chords is fed to the algorithm.

The results are illustrated in Figure 4 and 5. Figure 4(a) shows the results when the polyphony is
given. White bars show the error rate of the Predominant-F0 estimation, in which an error is counted
when the first estimated F0 mismatches all the true F0s. Here “match” means that two frequencies
lie in the same semitone range of the Western musical scale. Gray bars show the error rate of the
Multiple-F0 estimation, which is defined as the percentage of all F0s that are not correctly estimated
in the input signals. Black bars present the error rate of multiple-F0 estimation without counting the
octave errors. It can be seen that the multiple-F0 error rate increases fast with the polyphony, but
that of the predominant-F0 remains almost the same. This indicates that the greedy search strategy
in Table 2 is feasible. In addition, from the black bars, it can be seen that the octave errors take up
almost the half of all the multiple-F0 errors. On one hand, this indicates the inherent limitations of
our algorithm; on the other hand, these errors are not that annoying in some scenarios, such as chord
recognition from the F0 estimates.

Figure 4(b) shows the results of substituting the GMM model of p(di) in Figure 2(e) with a Gaussian
model. The mean and variance of the Gaussian model is set to those of the histogram. It can be seen
that this substitution makes the error rates of all the indexes increase. It indicates that the statistical
information about the peaks in the monophonic training data is more helpful than a usually used
non-informative Gaussian model in modeling the peaks in the polyphonic testing data.

Figure 5 shows the polyphony estimation results. In each panel the asterisk indicates the true
polyphony, and bars show a histogram of the estimates. The results for polyphony 1 and 2 are
acceptable, but are not satisfactory for polyphony 3 and 4. It indicates that the rectified BIC is still
not a proper method for estimating the number of the concurrent sounds.
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Figure 4: Error rates of predominant-F0 (white), multiple-
F0 (gray) and multiple-F0 without octave errors (black) es-
timations, given the polyphony.
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Figure 5: Histograms of polyphony es-
timates. The asterisks indicate the true
polyphonies.

5 Conclusion and discussion

In this paper, a Maximum Likelihood approach in the frequency domain is proposed to address the
multiple F0 estimation problem. Different from the other probabilistic spectral modeling methods,

2http://theremin.music.uiowa.edu/
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the proposed method works on the frequencies and amplitudes of the spectral peaks. It considers
the possibility of the errors in the peak detection algorithm and models the “true” and “false” peaks
separately. Parameters of these models are learned from the peaks of the monophonic training data.
The proposed method also incorporates a rectified BIC to estimate the number of the concurrent
sounds. The combinational explosion problem in the search space is approached by a greedy search
strategy. Experimental results on the randomly mixed chords show the feasibility of this method.

Compared with other spectral probabilistic modeling methods, using only the peaks reduces the
dimension of the observation and may prevent the effects of some noise. In addition, it makes that
possible of modeling subtly the peaks, which serve important roles in human perception of sounds.

Considering the possibility of errors in the peak detection algorithm in the likelihood function is
one of the core idea of this method, because it prevents the algorithm being trapped into finding
F0s to increase the likelihood of the “false” peaks. Discriminating and learning the statistics of the
“true” and “false” peaks, however, is hard to accomplished in the testing polyphonic data directly,
therefore we use the statistics of the peaks in the monophonic training data. Though the multiple
F0s may make the peak statistics different from the training data, the experimental results prove this
model’s feasibility. In the future, we would like to use the training data to start and then “bootstrap”
the modeling of peaks in the testing data itself, that is, we want to iteratively learn the statistics and
discriminate the “true” and “false” peaks in the testing data.

The current formulations limits the use of the method in harmonic sounds, but it is not hard to extend
to quasi-harmonic sounds such as piano tones. The only change will occur in the calculation of the
harmonic number of each peak. Another inherent limitation lies in the tendency of estimating the
half F0s. We want to address this issue in the future by rectifying the likelihood function, such as
increasing the spectral amplitudes at the harmonic positions of the F0s into the observation.
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