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Unsupervised Single-channel Music Source
Separation by Average Harmonic Structure

Modeling
Zhiyao Duan∗, Yungang Zhang, Changshui Zhang, Member, IEEE, Zhenwei Shi

Abstract— Source separation of musical signals is an appealing
but difficult problem, especially in the single-channel case. In this
paper, an unsupervised single-channel music source separation
algorithm based on average harmonic structure modeling is pro-
posed. Under the assumption of playing in narrow pitch ranges,
different harmonic instrumental sources in a piece of music often
have different but stable harmonic structures, thus sources can
be characterized uniquely by harmonic structure models. Given
the number of instrumental sources, the proposed algorithm
learns these models directly from the mixed signal by clustering
the harmonic structures extracted from different frames. The
corresponding sources are then extracted from the mixed signal
using the models. Experiments on several mixed signals, including
synthesized instrumental sources, real instrumental sources and
singing voices, show that this algorithm outperforms the general
Nonnegative Matrix Factorization (NMF)-based source separa-
tion algorithm, and yields good subjective listening quality. As a
side-effect, this algorithm estimates the pitches of the harmonic
instrumental sources. The number of concurrent sounds in each
frame is also computed, which is a difficult task for general
Multi-pitch Estimation (MPE) algorithms.

Index Terms— Single-channel Source Separation, Harmonic
Structure, Multi-pitch Estimation, Clustering.

I. INTRODUCTION

IN REAL music signals several sound sources such as
a singing voice and instruments are mixed. The task of

separating individual sources from a mixed signal is called
sound source separation. This task interests researchers work-
ing on other applications such as information retrieval, auto-
matic transcription and structured coding because having well-
separated sources simplifies their problem domains.

Sound source separation problems can be classified by
the number of sources and sensors. Over-determined and
determined cases are those in which the number of sensors
is larger than or equal to the number of sources, respectively.
In these cases, Independent Component Analysis (ICA) [1]–
[3] and some methods using source statistics [4], [8] can
achieve good results. However, they encounter difficulties

This work is supported by the project (60475001) and (60605002) of the
National Natural Science Foundation of China. Zhiyao Duan and Yungang
Zhang contributed equally to this paper. The corresponding author is Zhiyao
Duan (Email: duanzhiyao00@mails.tsinghua.edu.cn).

Zhiyao Duan and Changshui Zhang are with the State Key Laboratory
on Intelligent Technology and Systems, Tsinghua National Laboratory for
Information Science and Technology (TNList), Department of Automation,
Tsinghua University, Beijing 100084, China.

Yungang Zhang is with the Shanghai RS Technology CO., LTD, Shanghai,
200335, China.

Zhenwei Shi is with the Image Processing Center, School of Astronautics,
Beijing University of Aeronautics and Astronautics, Beijing 100083, China.

when handling Under-determined cases, in which sensors
are fewer than sources. In these cases, some state-of-the-art
methods employ source sparsity [5], [6] or auditory cues [7]
to address the problem. The single-channel source separation
problem is the extreme case of the under-determined source
separation problem. Some methods which address this problem
are reviewed in Section II.

According to the information used, sound source separation
methods can be classified as Supervised and Unsupervised.
Supervised methods usually need source solo excerpts to
train individual source models [8]–[17], or overall separation
model parameters [18], and then separate mixed signals using
these models. Unsupervised methods [19]–[23], having less
information to use, employ Computational Auditory Scene
Analysis (CASA) [24], [25] cues, such as harmonicity, com-
mon onset and offset time, to tackle the separation problem.
Also, nonnegativity [26], sparseness [4]–[6] and both [27] are
employed by some unsupervised methods.

In this paper, we deal with the single-channel music source
separation problem in an unsupervised fashion. Here each
source is a monophonic signal, which has at most one sound
at one time. It is found that in music signals, harmonic
structure is an approximately invariant feature of a harmonic
musical instrument in a narrow pitch range. Therefore, har-
monic structures of these instruments are extracted from the
spectrum of each frame of the mixed signal. We then learn
Average Harmonic Structure (AHS) models, typical harmonic
structures of individual instruments, by clustering the extracted
structures, given the number of the instrumental sources. Using
these models, corresponding sources are extracted from the
mixed signal. We note that this separation algorithm needs
not know the pitches of the sources. Instead, it gives Multi-
pitch Estimation (MPE) results as a side-effect. The algorithm
has been tested on several mixed signals of synthesized and
real musical instruments as well as singing voices. The results
are promising. The idea was first presented in [29]. This
paper gives different formulations of estimating the F0s and
extracting the harmonic structures, along with more detailed
analysis, experiments and discussions.

The rest of this paper is organized as follows. Section II
reviews some single-channel separation methods. The AHS
model of music signals is proposed and analyzed in Section
III. The model learning process and model-based separation
process are described in Sections IV and V, respectively.
Experimental results are illustrated in Section VI. We conclude
with some discussions in Section VII.
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II. RELATED WORK

The existing methods which aim at addressing the single-
channel sound source separation problem can be classified
into three broad and sometimes overlapping categories: Com-
putational Auditory Scene Analysis (CASA)-based, spectral-
decomposition-based and model-based methods [37].

A. CASA-Based Methods

CASA aims at using psychoacoustical cues [24], [25] to
identify perceived auditory objects (e.g. partials of notes in
music signals) and group them into auditory streams. Ba-
sic methods [19], [20], [23] use cues such as harmonicity,
common onset and offset time and correlated modulation to
characterize objects and build streams based on pitch proxim-
ity using binary masking [36]. Therefore, these methods can
hardly separate sources playing the same pitch or having many
overlapping partials.

To address this problem, a time-frequency smoothness con-
straint is added on the partials in [21], while spectral filtering
techniques are used to allocate energy for overlapping partials
in [22]. However, they both require knowledge of the pitches
of the sources. In [30] some supervised information, such as
timbre features learned on solo excerpts, are used to improve
instrument separation.

B. Spectral-Decomposition-Based Methods

Similar to the “segmentation-grouping” process in CASA-
based methods, spectral-decomposition-based methods first
decompose the power or amplitude spectrogram into basis
spectra vectors in a statistical fashion. These basis vectors are
then clustered into disjoint sets corresponding to the different
sources. Independent Subspace Analysis (ISA), which is an
extension of ICA, is applied to the single-channel source
separation problem [31]–[33]. Nonnegative Matrix Factor-
ization (NMF) [34], constraining the basis vectors and/or
time varying gains to be non-negative, has been found to
efficiently decompose the spectrogram [12], [26], [27]. The
sparseness constraint, which maintains consistency with the
characteristics of note activities in music, is also added to the
basis vectors and/or time varying gains in [5], [6], [28].

However, these methods generally encounter difficulties in
the basis vectors clustering step. In [31] basis vectors are
grouped by the similarity of marginal distributions, while in
[32] instrument specific features are employed to facilitate the
separation of drums. In [13] these features are learned from
solo excerpts using Support Vector Machines (SVMs), but
most other algorithms rely on manual clustering. In addition,
these methods perform well on percussive instrument separa-
tion, but are rarely used with harmonic instruments and singing
voices. In [12] vocals are separated from the accompanying
guitar, but the vocal features are learned from solo excerpts.

C. Model-Based Methods

These methods usually establish generative models of the
source signals to facilitate the separation task. In [9], [10],
Hidden Markov Models (HMM) are trained on solo data

and are factorially combined to separate the sources. In [15]
a three-layer generative model is employed for Bayesian
estimation of the sources. In [16], Bayesian harmonic models
and perceptually motivated residual priors are employed, but
this method concentrates primarily on decomposing signals
into harmonic components without grouping them into source
streams. In [17] a harmonic structure library is learned for each
pitch of each instrument from individual note samples, and is
then used to restore the overlapping partials in the separation
step. However, this method requires that the pitches of the
mixed signals be known.

These methods perform well on specific instrument separa-
tion problems, but have many model parameters to learn from
solo excerpts. In addition, different recordings of the same
instrument might change model parameters if the recording
environment is changed. Therefore, such a prior assignment
is not feasible. In [35] a spectral basis, which represents
harmonic structure models of sources, is learned in an un-
supervised fashion and is then used as NMF basis vectors to
separate the signals. However, these bases are learned from
the solo excerpts of the mixed signals, and fail when there is
no solo data for each specific instrument, as described in [35].

D. Our Method

Our method is in essence a model-based method, which em-
ploys Average Harmonic Structure (AHS) models to separate
harmonic instrumental sources from mixed signals. By bor-
rowing ideas from CASA and spectral-decomposition-based
methods, our method can deal with the problems encountered
by each category of methods mentioned above. First, the AHS
model is defined according to the harmonicity cues in CASA
and represents the approximate invariant feature of a harmonic
instrument. Second, the AHS models are learned directly from
the mixed signals in an unsupervised way, so it does not
need solo excerpts as training data. Third, when separating
the signals, it manipulates the spectrum of each frame like the
spectral-decomposition-based methods, but instead groups the
components according to the AHS models. Therefore, it does
not have difficulties grouping spectral components. Fourth, it
allocates energy of overlapping partials based on the AHS
models instead of binary masking, so that overlapping partial
problems caused by sources in a harmonic relationship or the
same pitch can be addressed.

III. AVERAGE HARMONIC STRUCTURE MODELING FOR
MUSIC SIGNALS

In the mixed signal, different sources usually have different
timbre. Our motivation is to model the timbre characteristics
to discriminate and separate the sources.

First consider the generation of sound from a harmonic
source (such as a violin or a singer). Essentially, the sound
is generated from a vibrating system (the violin string or
the vocal cords) and then filtered by a resonating system
(the violin body or the vocal tract) [39]. Although there is
some coupling between the two systems [40], the source-
filter model has been widely used in speech coding and music
sound synthesis [41]. In the frequency domain, this process
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Fig. 1. The illustration of the generation process of a harmonic sound.
The horizontal axis and the vertical axis are frequency and log-amplitude,
respectively. The vibration spectrum is usually modeled as a series of
harmonics with 6 or 12 dB/octave decrease in log-amplitude, while the
resonance spectrum is modeled as a smooth curve representing the formants.

is illustrated in Fig. 1, where the spectrum of the harmonic
source sound is the multiplication (addition in log-amplitude
scale) of the spectrums of the two systems.

For an instrument, its nearly invariant feature when playing
different pitches is its resonance spectrum, which can be mod-
eled by its Mel-frequency Cepstral Coefficients (MFCC) [42].
This explains why MFCCs are so successful in instrument
recognition for individual notes [38]. However, this feature is
not suitable for source separation, because the MFCCs of each
of the sources cannot be obtained from the mixed signals [43].
Therefore, a new feature that can characterize different sources
and be easily obtained from the mixed signal is needed. The
Average Harmonic Structure (AHS) is found a good choice.

Suppose s(t) is a source signal (monophonic), which can
be represented by a sinusoidal model [44]:

s(t) =
R∑

r=1

Ar(t) cos[θr(t)] + e(t) (1)

where e(t) is the noise component; Ar(t) and θr(t) =∫ t

0
2πrf0(τ)dτ are the instantaneous amplitude and phase

of the rth harmonic, respectively; f0(τ) is the fundamental
frequency at time τ ; R is the maximal harmonic number.
Although R is different for different sounds, it is set to 20
through this paper, since partials upper than 20 usually have
very small amplitudes and are submerged in the sidelobes of
the stronger partials, and for the notes having less than 20
partials, their upper partials are given a zero amplitude value.

Suppose that Ar(t) is invariant in a short time (e.g. a frame),
and is denoted as Al

r in the lth frame; the harmonic structure
in this frame is defined as the vector of dB scale amplitudes
of the significant harmonics:
• Harmonic Structure Coefficient:

Bl
r =

{
20 log10(Al

r), ifAl
r > 1

0, otherwise , r = 1, . . . , R.

(2)
• Harmonic Structure:

Bl = [Bl
1, . . . , B

l
R] (3)

The Average Harmonic Structure (AHS) model, just as its
name implies, is the average value of the harmonic structures
in different frames. Harmonic Structure Instability (HSI) is
defined as the average variance of the harmonic structure
coefficients.
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(a) Spectrums in different frames of a piccolo signal.
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(b) Spectrums in different frames of a voice signal.

Fig. 2. Spectrums of different signals. The horizontal axis is the number
of frequency bins. The vertical axis is the log-amplitude in dB. Note that
the difference in the log scale represents the ratio in the linear scale. The
differences among the harmonics between the two spectrums of the piccolo
signals are similar, while those of the vocal signals vary greatly. This shows
that the piccolo signal has a stable harmonic structure while the vocal signal
does not.

• Average Harmonic Structure (AHS):

B̄ = [B̄1, . . . , B̄R] (4)

B̄i =
1
Li

Li∑

l=1,Bl
i
6=0

Bl
i, i = 1, · · · , R. (5)

• Harmonic Structure Instability (HSI):

HSI =
1
R

R∑

i=1

{ 1
Li

Li∑

l=1,Bl
i
6=0

(Bl
i − B̄i)2} (6)

where Li is the total amount of frames where the ith harmonic
structure coefficient is not 0.

Specifically, we use the AHS model for the following
reasons: firstly, the AHS models are different for different
sources, since the harmonic structures are determined from
resonance characteristics, which are different for different
sources. Secondly, harmonic structure is an approximately
invariant feature for a harmonic instrument when it is played
in a narrow pitch range [35]. Although the harmonics move
up and down under a fixed profile, which is the resonance
characteristic, their amplitudes will not change much if the
pitch range is narrow enough, see Fig 2(a). Therefore, the
average value AHS can be used to model the source. Thirdly,
the harmonic structure of a singing voice is not as stable
as that of an instrument, see Fig. 2(b). This is because the
resonance characteristics for vocals vary significantly when
different words are sung, causing the shape of the resonator
(including the oral cavity) to change. This observation can be
used to discriminate instrumental sounds from vocal sounds.

In calculating the AHS model, the harmonics [Al
1, . . . , A

l
R]

are obtained by detecting the peaks in the Short Time Fourier
Transform (STFT) magnitude spectrum, as will be described
in Section IV-A. The total power of all these harmonics is
normalized to C, which can be an arbitrary constant. C is
set to 100dB in this paper. Harmonic structure is defined in
the log scale, simply because the human ear has a rough
logarithmic sensitivity to signal intensity. Also in the log
scale, the differences of the coefficients among the harmonics
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represent the power ratios in the linear scale, thus the Eu-
clidean distance between two structures is meaningful. Note
that the harmonic structure coefficient Bl

r is set to 0, if no
significant corresponding harmonic is detected. The AHS is
calculated in each dimension separately and only uses the non-
zero coefficients. If there are too few (less than 30%) non-zero
coefficients of a harmonic, in Eq. (4) the corresponding AHS
value in that dimension is set to zero.

In Fig. 3, we calculated the AHS and HSI in the middle
octave for several instruments in the Iowa musical instrument
database [45]. We also calculated the AHS and HSI for four
singing voice signals, where two are Italian voices downloaded
from the Sound Quality Assessment Material (SQAM) website
[46], and the other two are recorded Chinese voices.

From Fig. 3, it can be seen that the AHS of different
instruments are different, although they are more similar for
instruments in the same category (wood, brass or string). In
addition, the HSI of instruments (especially brass instruments)
are smaller than those of voices, even though the pitch range
of the two female voices are narrower. Furthermore, for each
instrument, in most cases the variances of different harmonics
differ little. Therefore, we use the HSI to represent the variance
of all the harmonics.

IV. AHS MODEL LEARNING FROM THE MIXED SIGNAL

For each source, an AHS model is learned directly from
the mixed signals. The model learning algorithm consists of
three steps: peak detection, harmonic structure extraction and
harmonic structures clustering.

A. Peak Detection

In each frame, harmonics of sources are usually represented
as peaks in the STFT spectrum, therefore, a peak detection
step is essential. There are several peak detection algorithms
in the literature, such as the cross-correlation method [47],
which assumes that each peak has the shape of the spectrum
of a sinusoid. It calculates the cross-correlation between the
detected spectrum and the spectrum of a sinusoid, to find the
peaks whose correlation values exceed a certain threshold.
However, this method is not suitable in polyphonic music
because many peaks do not resemble the spectrum of a
sinusoid due to overlapping partials.

In a spectrum (the thin curve in Fig. 4), peaks are local
maxima. However, it can be seen that there are many local
maxima caused by side lobes or noise. We define significant
peaks as those of interest relating to potential harmonics. We
developed a detection method for finding these peaks. First, the
smoothed log-amplitude envelope (the bold curve in Fig. 4) is
calculated by convolving the spectrum with a moving Gaussian
filter. Then the spectrum local maxima, which are higher than
the envelope for a given threshold (e.g. 8 dB) are detected as
significant peaks. Also, similar to [47], the peaks should be
higher than a bottom line (the horizontal line in Fig. 4), which
is defined as the maximum of the spectrum minus 50 dB. The
bottom line can be seen as the noise floor, and the peaks under
this line have negligible energy and high probabilities of being
generated by noise or side lobes. Finally, the peak amplitudes

and positions are refined by quadratic interpolation [48]. The
detected peaks are marked by circles in Fig. 4.

The algorithm to detect significant peaks seems somewhat
ad hoc, however, it provides robust peak detection results for
the rest of the whole separation algorithm. The parameters
of this algorithm used throughout this paper are the moving
Gaussian filter, the 8-dB and the 50-dB thresholds, and we
have found that our algorithm is not particularly sensitive to
parameter settings. In fact, they can be replaced by other
values, such as a moving average filter, 10-dB and 60-dB
thresholds, without any change in separation performance.
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Fig. 4. Peak detection algorithm illustration. The thin curve is the spectrum,
the bold curve is the smoothed log-amplitude envelope, and the horizontal
line is the bottom line of the peaks. Detected peaks are marked by circles.

B. Harmonic Structure Extraction

Harmonic structures of each frame in the mixed signal are
extracted from the peaks detected above. This process consists
of two sub-steps. First, the number of concurrent sounds and
the fundamental frequencies (F0s) are estimated. Second, the
corresponding harmonics of F0s are extracted.

1) Maximum-Likelihood-Based F0s Estimation: For a par-
ticular frame of the mixed signal, suppose K peaks have
been detected. Their frequencies and amplitudes are denoted
as f1, f2, · · · , fK and A1, A2, · · · , AK , respectively. Note that
there can be multiple F0s, which we estimate using the
Maximum Likelihood (ML) estimation with the spectral peaks
as our observations.

Although the number of harmonic sources are known for
the whole mixed signal, the number of concurrent sounds are
unknown in each frame. Therefore, we estimate the F0s as
well as the polyphony in each frame.

Suppose the polyphony in this frame is N , and the F0s are
f1
0 , f2

0 , · · · , fN
0 . The likelihood function can be formulated as:

p(O|f1
0 , f2

0 , · · · , fN
0 ) = p(f1, f2, · · · , fK |f1

0 , f2
0 , · · · , fN

0 )

=
K∏

i=1

p(fi|f1
0 , f2

0 , · · · , fN
0 ) (7)

where O is the observation, and is represented by the frequen-
cies of the peaks, because it contains the most information
that can be used at this point. It is also assumed that the
frequencies of the peaks are conditionally independent given
the F0s. This is reasonable and is commonly treated in the
spectral probabilistic modeling literature [49].
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Fig. 3. The AHS models of several harmonic instrumental and vocal signals in specific dynamic ranges and pitch ranges. The horizontal axis and the vertical
axis are the harmonic number and the log-amplitude in dB, respectively. Zero in the AHS value means that there is no significant corresponding harmonic
detected. The twice standard deviation of each harmonic is depicted as the small vertical bar around the AHS value.

For modeling of the likelihood of a peak fi, d(fi, f
j
0 ) is

calculated, which is the frequency deviation between peak
fi and the corresponding ideal harmonic of fundamental f j

0 .
The likelihood is modeled as a Gaussian distribution of d(fi),
which is defined as the smallest frequency deviation d(fi, f

j
0 )

among all the F0s, to follow the assumption that each peak is
generated by the nearest F0.

p(fi|f1
0 , f2

0 , · · · , fN
0 ) =

1
C1

exp{−d2(fi)
2σ2

1

} (8)

d2(fi) = min
j

d2(fi, f
j
0 ) (9)

d(fi, f
j
0 ) =

fi/f j
0 − [fi/f j

0 ]
[fi/f j

0 ]
(10)

where [·] denotes rounding to the nearest integer. σ1 is the
standard deviation and is set to 0.03 to represent half of the
semitone range. C1 is the normalization factor.

Note that if a new fundamental frequency fN+1
0 is added to

the existing F0s, the likelihood function will increase because
of the minimum operation. Thus, the likelihood of Eq. (7)
approaches 1

CK
1

, as the number of F0s goes towards infinity.

p(O|f1
0 , · · · , fN

0 ) ≤ p(O|f1
0 , · · · , fN

0 , fN+1
0 ) (11)

This is the typical overfitting problem of ML method and
can be addressed by applying model selection criterions. Here
the Bayesian Information Criterion (BIC) [50] is adopted to
estimate the number of concurrent sounds N .

BIC = ln p(O|f1
0 , f2

0 , · · · , fN
0 )− 1

2
N lnK (12)

TABLE I
ALGORITHM FLOW OF THE MULTIPLE F0S ESTIMATION

1) Set N = 1, calculate and store f1
0 which maximize Eq.

(7);
2) N = N + 1;
3) Calculate and store fN

0 , which maximize
p(O|f1

0 , · · · , fN−1
0 , fN

0 );
4) Repeat 2-3 until N = 10;
5) Select a value for N which maximize Eq. (12). The

estimated F0s are f1
0 , · · · , fN

0 .

The number of F0s and their frequencies are searched to
maximize Eq. (12). In order to reduce the search space and to
eliminate the trivial solution that the estimated F0s are near 0,
the F0s are searched around the first several peaks. This also
eliminates some half-fundamental errors. However, the search
space is still a combinatorial explosion problem. Hence, we
use a greedy search strategy, which starts with N = 1. The
algorithm flow is illustrated in Table I.

In this algorithm, the number of concurrent sounds N
and F0s may not be estimated exactly, but the results are
satisfactory for the harmonic structure clustering step, and the
final, correct F0s will be re-estimated in Section V-A.

It is noticed that the idea of probabilistic modeling of the
STFT peaks has been proposed by Thornburg and Leistikow et
al.. In [51] they aims at melody extraction and onset detection
of the monophonic music signal, and in [52] they aims at chord
recognition from a predefined codebook consisting 44 kinds of
chords of the polyphonic music signal. However, both of them
do not handle the general multiple F0 estimation problem.
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2) Harmonics Extraction: After the F0s have been esti-
mated, the corresponding harmonics are extracted from the
nearest peaks in the mixture spectrum, with the constraint
that the deviation in Eq. (9) lies in [−0.03, 0.03]. The log-
amplitudes of the peaks are used to form the harmonic struc-
ture in Eq. (3). If there is no peak satisfying this constraint, the
harmonic is assumed missing and the log-amplitude in Eq. (3)
is set to 0. Also the number of non-zero values in a harmonic
structure should be more than 5, based on the observation
that a harmonic instrumental sound usually have more than 5
harmonics. This threshold is invariant for all the experiments.

Note that in the spectrum of a polyphonic signal, the
harmonics of different notes often coincide. The amplitudes
of some peaks are influenced collectively by the coincident
harmonics. Therefore, the extracted harmonic structure is not
exact. However, because the relationship of the notes varies
in different frames, the way in which harmonics coincide also
varies. For example, suppose the rth harmonic coincide in
one frame, but in the other frames it may not coincide. We
can still learn the amplitude of the rth harmonic from all the
frames. This is the motivation behind the harmonic structures
clustering algorithm described in Section IV-C.

Special case: In the case that one source is always one
octave or several octaves higher than another source, as in
Section VI-B, the multiple F0 estimation and the harmonic
extraction method above cannot detect the higher F0 and
extract its harmonics. This is because of the following reasons.
First, in each frame, though the harmonics of the octave(s)-
higher F0 cannot be entirely overlapped by those of the lower
F0 due to slight detuning, and the likelihood will increase after
adding the octave(s)-higher F0, the increase is little and not
enough to compensate the decrease in Eq. (12) caused by the
model complexity penalty, since the detuning is much smaller
than σ1 in the Gaussian model in Eq. (8). One might consider
to change the weight of the model complexity penalty, but it is
difficult, because the design of the penalty should also consider
eliminating the false F0s which may be caused by false peaks
due to noise and side lobes. Therefore, the balance is hard
to achieve and the octave(s)-higher F0 cannot be detected.
Second, because this octave(s) relationship happens in all the
frames, the F0s and their harmonics of the octave(s)-higher
source are always not detected. Note that if this octave(s)
relationship just happens in some but not all frames, the
harmonics of the higher source can still be detected somewhat
and used to learn its AHS model. We address this special case
by separately estimating the M most likely F0s, using Eq. (7)
with N = 1, where M is the number of sources and given
as prior. This method emphasizes the F0 candidates as long
as at whose harmonic positions some peaks occur. Therefore,
some harmonics of the true F0s will be also detected as
false F0s. In order to eliminate these errors, a constraint is
adopted that an extracted harmonic structure should not be a
substructure of any others. This constraint discards the false
F0s mentioned above, because the harmonic structures of these
false F0s are always some substructures of the true F0s; but
it does not prevent the detection of the true, octave(s)-higher
F0, because its harmonics are not exactly overlapped by those
of the octave(s)-lower F0 due to the slight detuning, and the

harmonic structures of the higher F0 are not substructures of
the lower F0.

C. Harmonic Structures Clustering

After the harmonic structures of all F0s in all frames have
been extracted, a data set is obtained. Each data point, a
harmonic structure, is a 20-dimensional vector. The distance
between two data points is measured in the Euclidean sense.
As analyzed in Section III, harmonic structures are similar for
the same instrument, but different for different instruments.
Therefore, in this data set there are several high density clus-
ters, which correspond to different instruments, respectively.
In addition, these clusters have different densities, because the
stabilities of the harmonic structures of different instruments
are not the same. Furthermore, harmonic structures of a
singing voice scatter like background noise, because they are
not stable.

In order to learn the AHS model of each instrument, an
appropriate clustering algorithm should be used to separate
the clusters corresponding to the instruments, and remove
background noise points corresponding to the singing voice.
The NK algorithm [54] is a good choice for this application.
Its basic idea is to calculate at each point the sum of the
covariance of its neighborhood (K nearest neighbors), and
use this value to represent the inverse of the local density
at the point. Though there is no explicit equation between this
value and the local density, the larger the value is, the lower
the local density is. The point whose this value is larger than
the average value of its neighbors for one standard deviation
is assumed to be a background noise point, and is removed
from the data set, since it is a relatively low density point.
The remaining points connect to their neighbors and form
disconnected clusters. Since this algorithm only focuses on
relative local densities, it can handle the data set that consists
of clusters with different shapes, densities, sizes and even some
background noise. The number of neighbors K is the only
adjustable parameter in this algorithm for this application. It
decides how many disconnected clusters will be formed. The
bigger K is, the fewer clusters are formed. In our experiments,
the number of sources is used to guide the choice of K.

We note that AHS models of only the harmonic instrumental
sources can be learned from the clustering process, while those
of the inharmonic or noisy sources (such as a singing voice)
cannot be learned.

V. MUSIC SIGNAL SEPARATION BASED ON AHS MODELS

This section discusses how to separate the sources in the
mixed signal by using the learned AHS models. The basic idea
is to re-estimate the F0 corresponding to the AHS model in
each frame using ML estimation, then re-extract the harmonics
from the mixture spectrum and reconstruct the time domain
signal by using the Inverse Fast Fourier Transform (IFFT).

A. Maximum-Likelihood-Based F0 Re-estimation

Compared with the ML-based F0s estimation algorithm in
Section IV-B, here, a single-F0 estimation algorithm, given an
AHS model is used. The likelihood is formulated as follows:
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p(O|f, B̄) = p(f1, · · · , fK , A1, · · · , AK |f0, B̄)

=
K∏

i=1

p(fi, Ai|f0, B̄) (13)

where O denotes the observation (the spectrum of a frame),
f1, · · · , fK and A1, · · · , AK are the frequencies and ampli-
tudes of the peaks, respectively. B̄ is the AHS model and f0

is its corresponding fundamental frequency.
Compared with Eq. (7), additional information about the

amplitudes of the peaks is added to represent the observation,
since amplitude information is contained in the AHS model.
The frequencies and amplitudes of the peaks are still assumed
independent given the F0 and the AHS model as before.

The likelihood of each peak is derived using the chain rule
and the independence between the frequency of the peak and
the AHS model.

p(fi, Ai|f0, B̄)
= p(fi|f0, B̄) · p(Ai|fi, f0, B̄)
= p(fi|f0)p(Ai|fi, f0, B̄)

=
1
C2

exp{−d2(fi, f0)
σ2

1

} exp{−D2(Ai, B̄)
σ2

2

} (14)

where p(fi|f0) is modeled as a Gaussian distribution of
d(fi, f0), which is the frequency deviation of fi from the
nearest ideal harmonic of f0 as before. σ1 is the standard
deviation and is still set to 0.03 typically, to represent the
half of the semitone range. p(Ai|fi, f0, B̄) is modeled as a
Gaussian distribution of D(Ai, B̄), which is the log-amplitude
deviation of Ai from the nearest ideal harmonic B̄[fi/f0]). σ2

is set to the HSI of the AHS model. [·] denotes rounding to
the nearest integer. C2 is the normalization factor.

d2(fi, f0) = min

((
fi/f0 − [fi/f0]

[fi/f0]

)2

, 4σ2
1

)
(15)

D2(Ai, B̄) = min
(
(Ai − B̄[fi/f0])

2, 4σ2
2

)
(16)

Note that the minimum operation in these two equations
represent that, if the peak fi lies outside the semitone range
of the ideal harmonic of f0, or the log-amplitude of the peak
deviates more than twice the standard deviation, it is assumed
that the peak is not generated by f0. Therefore, the frequency
and the log-amplitude deviations of this peak from the ideal
harmonic of the F0 should be limited to avoid over-penalizing
in the likelihood function.

After all the F0s corresponding to the AHS model in all the
frames have been estimated, two cascade median filters with
length 3 and 7 are employed to the F0 line to eliminate abrupt
errors.

B. Re-extraction of Harmonics

For each estimated F0, the corresponding observed har-
monics are extracted from the mixture spectrum to form
the harmonics of the reconstructed source spectrum. If the

normalized log-amplitude (see Section III) of a harmonic in
the mixture spectrum deviates less than σ2 in Eq. (14), it is
used in the separated source spectrum; otherwise the value
in the AHS model is used. Note that for reconstructing the
harmonic sources, this process can either be a cascade one
that the harmonics are extracted one by one and subtracted
from the mixture before estimating further sources, or a
parallel one that all the harmonic sources are extracted directly
from the mixture spectrum. However, for reconstructing the
inharmonic or noisy sources, a cascade process is required
that the harmonics of all the harmonic sources are removed,
with the residual spectrum being left.

The extraction results eliminate many errors caused in the
first extraction described in Section IV-B. The reason is that in
the former extraction step, only information from one frame
is used. However, in the re-extraction step, the AHS models
are used, which contain information of all frames. Fig. 5
illustrates the improvements of harmonics extraction made by
using the AHS model. Fig. 5(a) and (b) are the spectrums of
two instrument sources in one frame. Fig. 5(c) and (d) are the
preliminary harmonic structure extraction results (marked by
circles) from the mixed signal, corresponding to estimated F0s
of the two sources. In Fig. 5(c), the last extracted harmonic
actually belongs to the second source but is assigned to the
first source. Also, in Fig. 5(d), the 3rd, 5th, 7th, 8th and 9th
extracted harmonics belong to the first source but are assigned
to the second source. These errors are caused by the incorrect
F0s being estimated using only the frequency likelihood of
the peaks in Eq. (7). In contrast, Eq. (13), the re-estimation of
F0s using the AHS models (Fig. (5(e) and (f)), incorporates
additional information about the log-amplitude likelihood of
the peaks, which eliminates all of the harmonic extraction
errors, see Fig. 5(g) and (h).

In addition, often some harmonics of different sources
overlap and their amplitudes are difficult to estimate. In this
case, the AHS model helps determine their amplitudes, without
using other spectral filtering techniques [22].

C. Reconstruction of the Source Signal

In each frame, for each instrumental source, the harmonics
extracted from the mixed signal form a new magnitude spec-
trum. To get the complex spectrum, the phases of the mixed
signal or those estimated from a phase generation method [55]
can be used. The waveform of each source is reconstructed by
performing the inverse FFT of the complex spectrum and using
an overlap-add technique. The waveform of the inharmonic or
noisy source (such as a singing voice or a drum) is synthesized
from the residual spectrum after extracting the harmonics. In
each frame, the energies of the sources are all normalized to
that of the mixed signal.

In most cases, the use of the mixed signal phases produces
good results. However, if the original phases are not suitable
for the separated sources, the resulting waveform may become
distorted because of discontinuities at frame boundaries. These
distortions are attenuated by the overlap-add procedure.

Note that our algorithm can deal with several harmonic
sources mixed with only one inharmonic or noisy source,
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(a) Spectrum of a piccolo signal
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(b) Spectrum of an organ signal
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(c) Extracted harmonics for the
piccolo in the AHS model learn-
ing step
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(d) Extracted harmonics for the
organ in the AHS model learn-
ing step
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(e) Learned piccolo AHS model
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(f) Learned organ AHS model
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(g) Re-extracted harmonics using
the piccolo AHS model
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(h) Re-extracted harmonics us-
ing the organ AHS model

Fig. 5. Harmonics extraction and re-extraction results. The harmonics
extraction accuracy is significantly improved by using the AHS models.

because the harmonic sources are extracted from the mixed
signal using AHS models, leaving the inharmonic or noisy
source in the residual.

VI. EXPERIMENTAL RESULTS

The proposed algorithm has been tested on several mixed
signals, including synthesized and real harmonic instru-
ment signals, and singing voices. All these sounds have
a sampling frequency of 22050 Hz, and are analyzed us-
ing 93 ms Hamming window with a 46ms hop-size, to
get constant overlap reconstruction (COLA) [48]. The ex-
perimental results including audio files are accessible at
http://mperesult.googlepages.com/musicseparationresults.

The performance of the experiments are all measured using
the evaluation method proposed in [56]. This gives the overall
signal to distortion ratio (SDR), the signal to interference ratio
(SIR), i.e. the ratio of the true source to the interference of
the other sources, and the signal to artifact ratio (SAR) i.e. a
measure of the artifacts introduced by the method. Essentially,
the estimated source is decomposed into a true source part plus

TABLE II
PERFORMANCE MEASUREMENT OF SEPARATING TWO SYNTHESIZED

HARMONIC INSTRUMENTAL SOURCES.

Piccolo Organ

AHS NMF Oracle AHS NMF Oracle

SDR 14.2 11.3 15.9 11.8 9.0 14.1
SIR 27.9 20.1 28.7 25.1 20.6 24.9
SAR 14.4 11.9 16.1 12.1 9.3 14.5

error terms corresponding to interferences, additive noise and
algorithmic artifacts, by projecting the estimated source to the
corresponding signal space. The energy ratios of these terms
form the definitions of SDR, SIR and SAR. These values are
calculated using BSS EVAL toolbox [57].

For comparison, the oracle separation results are calculated
using BSS Oracle toolbox [58]. Note that the oracle results
are the theoretically, highest achievable results of the time-
frequency masking-based methods, e.g. [9], [14], [15], which
are usual methods used for single-channel source separation
problems. The oracle results can only be obtained when
the reference sources are available. Therefore, it serves as
an upper bound on the performance. In addition, we im-
plemented the NMF-based source separation algorithm [26].
In this algorithm, the spectrogram of each source signal is
decomposed into 15 components, which span a subspace.
The spectrogram of the mixed signal is decomposed into 30
components. The components of the mixed signal are clustered
by distance measurements in the subspaces corresponding to
the sources, and classified into the closest subspace. Finally,
the components in the same subspace are used to synthesize
the corresponding source. Note that this NMF-based method
requires reference sources.

A. Two Synthesized Harmonic Instruments

The two MIDI-synthesized sources are played using piccolo
and organ patches, respectively, and are mixed by addition
with approximately equal energy without noise. The learned
AHS models are illustrated in Fig. 5(e) and (f). Since the
mixture is noise free and the two sources both have an AHS
model, we have three methods to separate the two sources: 1)
Extracting the piccolo source using its AHS model and leaving
the organ source in the residual; 2) Extracting the organ source
and leaving the piccolo source; 3) Extracting the two sources
both from the mixed signal using their own AHS models. The
performances of the three methods are similar, and the first
method is used in this section.

The numerical comparisons of the results are listed in Table
II. It can be seen that the SDRs and SARs of our algorithm
still have some room to improve to the oracle results, while
the SIRs of our algorithm approach or even outperform those
of the oracle results. This is probably because our algorithm
is not a binary masking method, which allocates the energy
of a time-frequency point to only one source. Our algorithm
allocates the overlapping partials to both sources according to
their own AHS models. In addition, our algorithm outperforms
the NMF-based method on all the indices. This is promising,
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since this NMF-based method uses the reference source signals
to guide the separation, while our method does not.

Our method also provides the Multi-pitch Estimation (MPE)
results as side-effects. The MPE pianorolls are illustrated in
Fig. 6(a) and (b). For comparison, we calculated the MPE
results in Fig. 6(c) using the current state-of-the-art MPE
algorithm [53], which estimates the pitches of each frame in
an iterative spectral subtraction fashion and has been found to
be successful in individual chord MPE tasks. The polyphony
number is estimated using the recommended method in that
paper with the restriction that the number not exceed 2 as
a prior, so that our algorithm and [53] are given the same
information. The true pianoroll is illustrated in Fig. 6(d). All
the pianorolls are painted using the MIDI Toolbox [59].
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(a) Pianoroll of the separated
piccolo of our method
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(b) Pianoroll of the separated
organ of our method
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(c) Pianoroll of the MPE [53]
results
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(d) Pianoroll of the true MPE
results

Fig. 6. Comparison of the MPE results between [53] and our method

In Fig. 6, it can be seen that our algorithm gives good
MPE results for both sources, except for several occasional
errors at note transitions. Furthermore, on this specific mixture,
our algorithm outperforms [53] in several regards. First, it
correctly determines which note belongs to which source,
while this task cannot be accomplished by MPE algorithms.
Second, it gives better estimations of pitch numbers in each
frame compared to [53]. For example, in the intermission of
one source (such as the 5th-6th second, and the 24th-27th
second of the piccolo source), there is actually only one pitch
in the mixed signal. Our algorithm correctly estimates the only
pitch at that moment, while [53] incorrectly adds a note. Third,
it deals well with the overlapping note cases. For example, the
short note of MIDI number 65 at about the 2nd-3rd second of
the piccolo source is entirely overlapped by the long note of
the organ source. Our algorithm correctly estimates the two
notes, while [53] adds a false note at MIDI number 77.

B. A Synthesized Harmonic Instrument and A Singing Voice

The instrumental source is the piccolo signal used in Section
VI-A, and the singing voice is a Chinese female vocal which
is one octave below. The mixed signal is generated by adding
the two sources with equal energy and without noise.

(a) Piccolo source (b) Voice source (c) Mixed signal

(d) Separated piccolo (e) Separated voice

Fig. 7. Spectrograms of a synthesized harmonic instrumental source, a
singing voice, the mixture and the separated signals. The x-axis is time from 0
to 27 seconds, the y-axis is linear frequency from 0 to 11025Hz. The intensity
of the graph represents the log-amplitude of the time-frequency components,
with white representing high amplitude.

TABLE III
PERFORMANCE MEASUREMENT OF SEPARATING A HARMONIC

INSTRUMENTAL SOURCE AND A SINGING VOICE.

Piccolo Vocal

AHS NMF Oracle AHS NMF Oracle

SDR 9.2 7.7 15.0 9.0 5.6 15.0
SIR 19.7 17.8 27.7 30.8 15.5 23.0
SAR 9.7 8.3 15.3 9.1 6.2 15.6

Note that the one octave relationship is the special case
mentioned in Section IV-B, where the F0s are firstly estimated
using the single F0 estimation algorithm, and the sub-structure
elimination mechanism is employed to avoid F0 and harmonic
structure errors. Fig. 7 illustrates the spectrograms of the
sources, mixtures and the separated signals. It can be seen
that the separated signals are similar to the sources, except that
some higher harmonics of the piccolo signal are not preserved.
This is because these harmonics are hard to detect in the mixed
signal, and cannot be learned in the AHS model.

The SDR, SIR and SAR values are listed in Table III. It
can be seen that our method outperforms the NMF method in
all the indices. Compared with the oracle results, there is still
some room for improvement, though, our SIR of the voice
source is higher indicating that the components of the piccolo
signal better extracted.

In order to inspect the performance comparison more
deeply, we mixed the two sources with different energy ratios,
and depicted the SDR curves of the mixed signal, oracle
results, NMF results and our results, versus the energy ratio
between the piccolo source and the voice source as in Fig. 8.

In Fig. 8(a), the SDR curve of the mixed signal represents
the SDRs of the mixed signal viewed as the estimated piccolo
source, therefore, its value equals to the energy ratio on the
abscissa. Similarly, in Fig. 8(b) the SDR curve is inverse
proportional to the abscissa. The two curves are the baselines,
where nothing has been done to the mixed signal. The oracle
lines are the highest ones. They are generally the theoretical
upper bounds of the single-channel source separation perfor-
mance. The piccolo source’s oracle SDR increases with the
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Fig. 8. SDRs vary with the energy ratio between the piccolo and the voice.

energy ratio between the piccolo and the voice, while the voice
source’s oracle SDR decreases. It indicates that the extraction
of a source is easier when its source’s energy is larger in
the mixed signal. The middle two lines in each sub-figure are
our results and the NMF results. It can be seen that when the
piccolo voice energy ratio is lower than -3dB, the performance
of our method is worse than that of the NMF method, because
in this case the spectrums of the piccolo signal are submerged
by those of the voice signal, thus the AHS model is hard to
obtain and the piccolo signal is hard to extract using the AHS
model. However, our method generally outperforms the NMF
method, especially when the piccolo energy is large.

In our algorithm, the likelihood function in Eq. (13) is the
key formula to re-estimate the F0s. Its maximum among all
the possible F0s gives the likelihood of the observation given
an AHS model. Here given the AHS model of the piccolo
signal, the minus log-likelihood of the piccolo signal and the
voice signal are calculated separately in Fig. 9.
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Fig. 9. The maximum of the minus log likelihood (Eq. (13)) among all the
F0s, given the AHS model of the piccolo signal.

From Fig. 9, it can be seen that the minus log likelihood
of the piccolo signal is much smaller than that of the singing
voice. It means two things: First, the AHS model learned from
the mixed signal correctly represents the characteristic of the
piccolo source. Second, the likelihood definition of Eq. (13) is
proper that it discriminates the piccolo source and the singing
voice distinctly, and guarantees separation performance. In
addition, it can be seen that the minus log likelihood of the
piccolo signal varies with time. For most of the time, it is
rather small, however, at note transitions (refer to Fig. 6(a))
it is large. This is because the harmonic structures are not
stable and deviate from the AHS model somewhat at note

TABLE IV
PERFORMANCE MEASUREMENT OF SEPARATING TWO SYNTHESIZED

HARMONIC INSTRUMENTS AND A SINGING VOICE.

Piccolo Oboe Voice

AHS NMF Oracle AHS NMF Oracle AHS NMF Oracle

SDR 11.2 13.7 19.4 10.1 12.9 17.3 7.6 6.2 16.9
SIR 23.1 22.5 34.4 33.1 26.6 31.1 23.1 28.6 30.9
SAR 11.5 14.4 19.5 10.2 13.1 17.5 7.7 6.2 17.1

transitions. This indicates that the AHS model better suits
stationary phases versus transitory phases.

C. Two Synthesized Harmonic Instruments and a Voice

The three sources and their pitch ranges are a piccolo
(F4-D5]), an oboe (G3]-A4]) and a male voice (G2-G3),
respectively. Different from Section VI-B, the three sources
are not related, and are mixed with the energy ratio of piccolo
to oboe 2.5dB, piccolo to voice 6.7dB.

The two learned AHS models of the piccolo and the oboe
are depicted in Fig. 10. As described in Section VI-B, the
separation performance is better if the source with the biggest
energy is extracted first. Therefore, here we first extract the
piccolo signal using its AHS model, then extract the oboe
signal from the residual. The final residual is the voice signal.
The numerical results are listed in Table IV. From this table, it
can be seen that the performance of the AHS method and the
NMF method are similar, and both the two methods still have
much room for improvement compared to the oracle results.
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(a) Learned piccolo AHS model
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(b) Learned oboe AHS model

Fig. 10. AHS models learned from the mixed signal.

D. Two Real Harmonic Instruments

The two instrumental sources are oboe (E5-F5) and eu-
phonium (G3-D4) solo excerpts, extracted from unrelated
commercial CDs, however, they have a harmonic relationship.
They also have some vibrato and reverberation effects. The
mixed signal is generated by adding the two sources without
noise, where the energy ratio is 2.3dB (Euphonium to Oboe).

The two corresponding AHS models learned from the mixed
signal are depicted in Fig. 11. As described in Section VI-
A, there are three methods to separate the two harmonic
instrumental sources using the two AHS models. However, it
is found that the results achieved by first extracting the oboe
source and leaving the euphonium source as the residual are
superior, though the energy of the Euphonium is larger. This
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TABLE V
PERFORMANCE MEASUREMENT OF SEPARATING TWO REAL HARMONIC

INSTRUMENTAL SOURCES.

Oboe Euphonium

AHS NMF Oracle AHS NMF Oracle

SDR 8.7 7.9 25.8 4.6 2.3 18.9
SIR 25.8 10.2 41.1 14.5 9.0 35.4
SAR 8.8 12.0 26.0 5.3 3.8 19.0

is likely the case that the euphonium AHS model was not
learned well. As shown in Fig. 11, the learned 6th harmonic
is significantly higher than the other harmonics, which is not
usual. The reason for this abnormality is because the pitches
are lower, such that the harmonics of the euphonium are
contaminated more severely by those of the oboe signal.
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(a) Learned oboe AHS model
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(b) Learned euphonium AHS model

Fig. 11. AHS models learned from the mixed signal.

The numerical evaluation results are listed in Table V. It
can be seen that there is still much room for improvement
comparing our results to those of the oracle results. However,
our results are better than those of the NMF-based method
except the SAR value of the oboe signal. This is being the
case because some artifacts are introduced by the AHS model
when extracting the oboe signal. However, our SIR values are
significantly higher, illustrating that the AHS model is better
at suppressing interference.

In addition to these experiments, more are accessible at
http://mperesult.googlepages.com/musicseparationresults.

VII. CONCLUSION AND DISCUSSION

In this paper, an unsupervised model-based music source
separation algorithm is proposed. It is found that the harmonic
structure is an approximately invariant feature of a harmonic
instrument in a narrow pitch range. Given the number of
instrumental sources and the assumption that the instruments
play in narrow pitch ranges, the Average Harmonic Structure
(AHS) models of different instruments are learned directly
from the mixed signal, by clustering harmonic structures
extracted from different frames. The AHS models are then
used to extract their corresponding sources from the mixed sig-
nal. Experiment separating synthesized instrumental sources,
real instrumental sources and singing voices, show that the
proposed method outperforms the NMF-based method, which
serves as a performance reference for the separation task.

The proposed algorithm also estimates the pitches of the
instrumental sources as a side-effect. It can automatically

decide the number of concurrent sounds and identify the
overlapped notes, which is difficult for general Multi-pitch
Estimation algorithms.

It is noticed that the proposed algorithm cannot handle a
mixed signal which has more than one inharmonic or noisy
sources (such as drums and singing voices), because these
sources cannot be represented by the AHS model and are left
in the residual during separation.

For future work, we would like to extend the AHS model
to model properly stringed-instruments by adding the time
dimension, since harmonic structures of these instruments
vary with time. Finally, modeling the resonant features of
instrumental sources can better characterize instruments and
be more robust against pitch variations.
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