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ABSTRACT

We present a novel online audio-score alignment approach for multi-
instrument polyphonic music. This approach uses a 2-dimensional
state vector to model the underlying score position and tempo of
each time frame of the audio performance. The process model is
defined by dynamic equations to transition between states. Two rep-
resentations of the observed audio frame are proposed, resulting in
two observation models: a multi-pitch-based and a chroma-based.
Particle filtering is used to infer the hidden states from observations.
Experiments on 150 music pieces with polyphony from one to four
show the proposed approach outperforms an existing offline global
string alignment-based score alignment approach. Results also show
that the multi-pitch-based observation model works better than the
chroma-based one.

Index Terms— Score following, audio-score alignment, online
algorithm, realtime, hidden Markov model

1. INTRODUCTION

Score alignment is the task of aligning a musical performance with
its corresponding score. It has been a research topic at least since
1984 [1, 2], and is still an active research topic. Typical applications
of score alignment include accompanying a monophonic perfor-
mance [3] and synchronizing multiple sources (video, audio, score,
etc.) of music in a digital library [4].

Score alignment can be addressed offline or online. An offline al-
gorithm can use the whole performance of a music piece. The online
version (also called score following) cannot “look ahead” at future
performance events when aligning the current event to the score.

In score alignment, although the musical score is usually a
machine-readable MIDI file, the musical performance can be en-
coded as either MIDI or audio. We focus here on audio-MIDI
alignment where the performance is audio and the score is encoded
as MIDI. Performances can be classified as monophonic and poly-
phonic. Monophonic audio can be reliably transcribed by mature
single-pitch detection techniques. Polyphonic pitch estimation re-
mains an open area of research.

In this paper, we consider the most difficult case, i.e. online
polyphonic audio-MIDI alignment. Reliable online polyphonic
audio-midi alignment would support applications including auto-
matic accompaniment of live music, real-time audio pitch correc-
tion, and real-time score-informed source separation.

Score following research began with following MIDI perfor-
mances [1, 2, 5]. To follow monophonic audio performances,
Puckette [6], Grubb and Dannenberg [7] proposed systems to follow
singing voices. Orio and Dechelle [8] proposed a Hidden Markov

Model (HMM)-based approach to follow different instruments and
voices. Raphael [3] used a Bayesian network to follow and accom-
pany a solo instrument.

For polyphonic audio, Grubb and Dannenberg [9] adopted
string matching to follow a musical ensemble, where each instru-
ment needs to be recorded by a close microphone and streamed
into a monophonic pitch sequence. This method will not work
where the instruments are not separately recorded. Ewert et al. [10]
build a high resolution polyphonic audio-score alignment system
using Dynamic Time Warping (DTW) with chroma onset features,
which works in an offline fashion. Dixon’s [11] online DTW al-
gorithm follows piano performances, where each audio frame is
represented by a onset-informed low-level feature vector. This,
however, may have difficulties for instruments with smooth onsets
like strings and winds. Cont [12] proposed a hierarchical HMM
approach with Nonnegative Matrix Factorization (NMF) to follow
piano performances. A spectral basis is learned for each pitch of
the piano before-hand. Tuning issues make it difficult to create a
basis set to cover arbitrary pitch-instrument combinations. In [13],
a probabilistic inference framework with two coupled audio and
tempo agents follows a polyphonic performance and estimate its
tempo. This works well on single-instrument polyphonic audio. For
multi-instrument polyphonic audio, more experiments are needed to
evaluate performance.

We now describe a novel online score follower that can follow
multi-instrument polyphonic audio performances, without requiring
training on prior performances of the piece or on the instruments to
be followed. Statistical results on 150 real music performances show
the validity of the method.

2. METHOD

We decompose an audio performance into time frames and use a vec-
tor in a 2-dimensional state space to represent the underlying score
position and tempo of each frame. As illustrated in Figure 1, for the
n-th frame the hidden state vector is sn = (xn, vn)T , where xn is
its score position (in beats), vn is its tempo (in Beats Per Minute
(BPM)) and T denotes matrix transposition. The frame is also asso-
ciated with an observation, which is a vector of PCM encoded audio,
yn. Our aim is to infer the current score position xn from current
and previous observations y1, · · · ,yn.

Here, xn is drawn from the interval containing all score posi-
tions from the beginning to the end. vn is drawn from the interval of
all possible tempi [vl, vh] . In this work, we set the lowest tempo vl

to half of the notated score tempo and the highest tempo vh to twice
the score tempo. It is noted that the state space is continuous instead
of discrete.



Fig. 1. Illustration of the state space model. Each column corre-
sponds to a time-frame of the audio performance.

In the following sections, we define a process model to describe
how the states transition, propose an observation model to describe
the likelihood of generating an observation given a state, and find a
way to infer the hidden states.

2.1. Process model

We use two dynamic equations to transition between the previous
and current state. To update the score position, we use

xn = xn−1 + l · vn−1 (1)

where l is the audio frame hop size. Thus, score position of the cur-
rent audio frame is determined by the score position of the previous
frame and the current tempo. To update the tempo, we use

vn = { vn−1 + nv if zk ∈ [xn−1, xn] for some k
vn−1 otherwise (2)

where nv ∼ N (0, σ2
v) is a Gaussian noise variable; zk is the k-

th note onset/offset time in the score. If the current score position
has just passed a note onset or offset, the current tempo makes a
random walk around the previous tempo according to a Gaussian
distribution; otherwise the current tempo remains the same. The
noise nv is to account for possible tempo changes of the performer.
Since a tempo change can only be perceived near an onset or offset,
it is only introduced in the first line. Here, the standard deviation
of nv is set to a quarter of the notated score tempo. In addition,
we can see that randomness is only introduced in tempo instead of
score position. In this way, the score position estimates change more
smoothly.

2.2. Observation model

The observation model presents the likelihood of observing an audio
frame given a state, i.e. p(yn|sn). Different audio representations
(features) have been exploited in existing audio-score alignment sys-
tems [14]. In this paper, we use two kinds of representations, result-
ing two observation models that we compare: one based on multi-
pitch information, and one based on chroma.

2.2.1. Multi-pitch-based model

Multi-pitch information is very useful to represent an audio frame in
score following, since pitch information can be directly aligned to
score information [12]. In this paper, we use the multi-pitch likeli-
hood function which is defined in our previous work on multi-pitch

estimation [15] to define the observation model p(yn|sn),

p(yn|sn) = − C

ln(p(yn|θ))
(3)

where C is the normalization factor for probability; θ is the set of
pitches indicated by the score at position xn; and p(yn|θ) is the
multi-pitch likelihood function defined in [15].

We calculate p(yn|θ) as described in [15]. Basically, a power
spectrum is calculated from the audio frame yn. Peak regions and
non-peak regions are identified from this spectrum and the multi-
pitch likelihood function p(yn|θ) is defined separately in these two
regions. Model parameters of p(yn|θ) are trained on isolated mu-
sical chords generated by 16 kinds of instruments with a wide pitch
and dynamic range. This model performs well in estimating poly-
phonic pitches on multi-instrument polyphonic music pieces in [15].
Therefore, we believe it is a good choice to define the observation
model for our score follower.

Note that we do not use p(yn|θ) as p(yn|sn) directly, because
it turns out that p(yn|θ) differs too much (usually tens of order of
magnitude) for different pitches at different score positions. Since
the probability calculated from the process model does not have this
large difference for different score positions, the posterior probabil-
ity of state will be strongly influenced by the observation model,
while the process model will be almost ignored. If the observation
model does not function well in some frame, the estimated score po-
sition may jump to an unreasonable position, although the process
model tend to proceed from previous score position smoothly.

Also note that in evaluating an observation likelihood p(yn|sn),
we do not need to estimate the pitches in the audio frame. This is dif-
ferent from [12], where pitches of the audio frame are first estimated,
then the observation likelihood is calculated based on the differences
between the estimated pitches and the score-indicated pitches. By
skipping the pitch estimation step, we reduce model risks caused by
pitch estimation errors.

2.2.2. Chroma-based observation model

The chromagram is a good way to represent the harmonic content of
an audio or score frame. It has been used in a number of offline score
alignment approaches, e.g. [16]. In our work, chroma are extracted
for both audio and MIDI. It is a 12-d vector, where each dimension
corresponds to a pitch class. The amplitudes of all spectral bins of an
audio frame that share a pitch class are summed to get the value of
the pitch class in the audio chroma vector. For a score position, the
dimension of the MIDI chroma vector is set to 1 if there is a score
pitch in this pitch class; otherwise, it is set to 0.

Given the audio chroma vector ca of the n-th audio frame and
the score chroma vector cm at score position xn, we calculate the
angle between the two vectors,

α = arccos

„
cT

a cm

‖ca‖‖cm‖
«

(4)

where T denotes the vector transpose and ‖·‖ denotes the Euclidean
norm. For the special case that only one vector is zero, i.e. either
audio or score is silent but not both, α is defined as π

2
. If both vectors

are zero, then α is 0. Note that the range of α is [0, π
2
], since both

vectors are nonnegative.
We assume that α has a Gaussian distribution centered at 0 with

a standard deviation of 1. Then p(yn|sn) is defined as

p(yn|sn) = C′p(α) = C′
1√
2π

exp
˘−α2¯ (5)



where C′ is the normalization factor to make p(yn|sn) a probability
distribution. It is noted that although α assumes a Gaussian distribu-
tion, yn, i.e. ca in this model does not.

We use cosine angle distance instead of Euclidean distance to
define the observation likelihood in Eq. (5) to make it loudness in-
sensitive. This is because the loudness of the audio may vary from
the loudness indicated by the score differently in different music per-
formances.

2.3. Inference

Given the process model and the observation model, we want to infer
the hidden state sn of the current frame from current and past obser-
vations Y1:n = (y1, · · · ,yn). From a Bayesian point of view, this
means that we first estimate the posterior probability p(sn|Y1:n),
then decide its value using some criterion like maximum a posterior,
mean or median. By Bayes’ rule, we have

p(sn|Y1:n)

= Cnp(yn|sn)

Z
p(sn|sn−1)p(sn−1|Y1:n−1) dsn−1 (6)

where Cn is the normalization factor; sn−1 is integrated over
the whole state space; p(yn|sn) is the observation model and
p(sn|sn−1) is the process model.

In Eq. (6), we can see that p(sn|Y1:n) is recursively updated
from the posterior probability in the previous frame p(sn−1|Y1:n−1).
Therefore, if we initialize p(s1|y1) in the first frame and keep up-
dating it using Eq. (6) as each frame is processed, the inference can
be done online.

This is the general formulation of online filtering (tracking). Par-
ticle filtering [17] is a way to solve the problem when the process
model or the observation model is non-Gaussian, as are our obser-
vation models in Eq.(3) and (5). In particle filtering, the posterior
distribution of state is represented and updated by a fixed number
of particles together with their weights. We use the bootstrap filter
[17], a particle filter variant that gives all particles the same weight
in each iteration.

Prior to processing the first frame of audio, 1,000 particles are
initialized to have score positions equal to the first beat and tempi as-
sume a uniform distribution in the possible tempo range [vl, vh]. All
particles have the same weight. When the n-th iteration starts, par-
ticles represent the posterior distribution p(sn−1|Y1:n−1) of sn−1.
These particles are then updated according to state transition equa-
tions Eq. (1) and (2) and after this they represent the conditional
distribution p(sn|Y1:n−1) of sn. Finally, the observation likelihood
p(yn|sn) is calculated for each particle according to Eq. (3) or Eq.
(5) as its new weight.

The weights are then normalized and form a discrete distribu-
tion. The particles are sampled with replacement according to this
distribution, then perturbed with a small Gaussian noise with zero
mean and standard deviation of 0.01 beat for position and 1 BPM
for tempo. After this, the newly sampled particles now represent the
posterior distribution p(sn|Y1:n) of sn. Finally, the mean of these
particles is output as the estimated score position and tempo of the
current frame.

In updating the tempo of each particle in Eq. (2), instead of using
its previous tempo as vn−1, we use the estimated tempo, i.e. the
average tempo of all particles in the previous frame. This practical
choice avoids that the particles become too diverse after a number of
iterations due to the accumulation of randomness of nv .

A common problem of particle filtering is degeneracy [17],
where most particles have negligible weights after a few iterations.

The bootstrap filter we use here alleviates this problem, since the re-
sampling step in each iteration removes particles with small weights
and maintains equal weights for all remaining particles. Also, per-
turbation after resampling assures the diversity of the particles.

3. EXPERIMENTS

3.1. Dataset and error measure

The dataset we use to evaluate the score follower is adapted from ten
J.S. Bach four-part chorales, each of which is about 30 seconds long.
The MIDI files were downloaded from the internet1. The audio files
are real music performances. Each piece is performed by a quartet
of instruments: violin, clarinet, tenor saxophone and bassoon. Each
musician’s part was recorded in isolation, while the musician lis-
tened to the others through headphones. For each piece, we explore
all combinations of the individual parts to generate 4 monophonic
pieces, 6 duets, 4 trios and 1 quartet together with their correspond-
ing MIDI files. In total this gives 150 music pieces of polyphony
from 1 to 4. Ground-truth alignment between MIDI and audio was
manually annotated. We note that the tempo of each MIDI is con-
stant, while the audio recordings typically contain fermata after mu-
sical phrases and tempi vary within phrases.

We use Align Rate (AR) as proposed in [18] to measure the align-
ment result. For each piece, AR is defined as the percentage of cor-
rectly aligned notes in the score. A score note is said to be correctly
aligned if its onset is aligned to an audio time which deviates less
than 250ms from the true audio time. This measure ranges from 0 to
1. We also propose another metric called Average Alignment Error
(AAE), which is defined as the average absolute difference between
the aligned score position and the truth score position of each frame
of the audio. The unit of AAE is the musical beat and it ranges from
0 to the maximum number of beats in the score.

The two proposed score followers are denoted as SF-Pitch and
SF-Chroma, corresponding to the two observation models, respec-
tively. For both score followers, the audio performance is decom-
posed into 46ms long frames with 36ms overlap. A Fourier trans-
form is performed on each frame with a 46ms long hamming win-
dow. For a baseline comparison, we use Scorealign, which is an open
source offline audio-score alignment system2 based on the algorithm
described in [16].

3.2. Results

Figure 2 shows the two proposed score followers, SF-Pitch and
SF-Chroma, outperform the offline score aligner Scorealign on our
dataset. This is promising, since offline approaches have more in-
formation available to use than online approaches. The reason that
Scorealign does not perform as well as the other two is that it does
not explicitly models the temporal dynamics of a performance.

Both SF-Pitch and SF-Chroma performs well. Almost all pieces
have more than 80% notes correctly aligned. SF-Pitch achieves a
slightly higher median and fewer outliers than SF-Chroma. This in-
dicates the multi-pitch-based observation model is superior for this
task. This is intuitive, since chroma features captures the distribution
of pitch classes instead of absolute pitches. The outliers of SF-Pitch
and SF-Chroma show some extremely low values. These outliers
correspond to musical pieces where the score followers get lost at

1http://www.jsbchorales.net/index.shtml
2http://sourceforge.net/apps/trac/portmedia/

wiki/scorealign
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Fig. 2. Boxplots of align rate on 150 music pieces. The number
besides each box indicates the median.

the beginning of the audio. Unlike offline algorithms, it is very diffi-
cult for a score follower to find the right spot, once it is lost.

Table 1. Ave±Std of align rate and average alignment error versus
polyphony.

metric poly SF-Pitch SF-Chroma Scorealign
1 88.4±15.6 81.0±19.5 86.5±6.7

Align 2 96.3±3.3 88.5±20.3 89.1±5.7
rate (%) 3 96.4±3.6 89.9±16.4 89.4±6.1

4 96.4±3.3 92.8±6.2 88.3±7.2
1 0.40±1.22 0.79±1.47 0.22±0.07

AAE 2 0.14±0.04 0.59±1.56 0.19±0.04
(beat) 3 0.13±0.03 0.39±1.23 0.19±0.04

4 0.12±0.03 0.17±0.07 0.19±0.05

Table 1 presents the results for pieces with different polyphony.
It is interesting to see that as polyphony increases, all three meth-
ods perform better. We believe this is because repeated notes in
the monophonic pieces cause alignment errors, since note onsets
are not explicitly encoded in the audio representations. Polyphonic
pieces do not have this issue, since note combinations will not re-
peat if repeated notes appear at different score positions for different
sources. Monophonic pieces with too many or too long repeated
notes make the score followers lost and correspond to the outliers in
Figure 2. These pieces also cause the large standard deviations for
low polyphony pieces in Table 1.

The performance improvement for SF-Pitch and SF-Chroma are
larger than SA-Chroma as polyphony increases, resulting the highest
average align rate of 96.4% for SF-Pitch on pieces of polyphony
4. This indicates the proposed followers work well on polyphonic
music. Furthermore, the average AAE of SF-Pitch for polyphony 2
to 4 are all less than a quarter beat. This would support applications
like real-time score-informed source separation and pitch correction.

We provide several alignment examples of the three sys-
tems at http://www.cs.northwestern.edu/˜zdu459/
icassp2011/examples.

4. CONCLUSIONS

This paper presents an online score following approach for multi-
instrument polyphonic music. Two different representations of au-

dio are used, which results in two systems. Both systems outperform
a global string alignment-based offline approach on 150 real music
pieces. For future work, we would like to find another representa-
tion that can model temporal dynamics (like onsets) to improve the
alignment. We would also like to apply the proposed approach to
real-time score-informed source separation.
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