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Abstract
Classical single-channel speech enhancement algorithms have
two convenient properties: they require pre-learning the noise
model but not the speech model, and they work online. How-
ever, they often have difficulties in dealing with non-stationary
noise sources. Source separation algorithms based on non-
negative spectrogram decompositions are capable of dealing
with non-stationary noise, but do not possess the aforemen-
tioned properties. In this paper we present a novel algorithm
that combines the advantages of both classical algorithms and
non-negative spectrogram decomposition algorithms. Experi-
ments show that it significantly outperforms four categories of
classical algorithms in non-stationary noise environments.
Index Terms: speech enhancement, source separation, non-
negative matrix factorization, online algorithm

1. Introduction
Speech enhancement, which aims to improve the quality and
intelligibility of noisy speech signals by reducing noise, has
been an active research problem for decades. Numerous algo-
rithms have been proposed and commercialized. According to
[1], existing single-channel methods can be generally catego-
rized into four classes: spectral subtraction [2], Wiener filtering
[3], statistical-model-based [4] and subspace algorithms [5].

Despite the differences between these categories, they share
two important properties. First, they only require an estima-
tion of the noise model (e.g. spectrum, subspace, etc.) from
noise-only excerpts, and do not require a speech model before
the enhancement process. This is appealing since noise-only
excerpts are relatively easy to obtain from noisy environments
when speech is silent. On the other hand, speech-only excerpts
are difficult to obtain as we rarely encounter real-world seg-
ments with no noise. Also, the structure of noise is usually
simpler and has less variations over time than speech, which
makes pre-learning of noise models more feasible. The other
important property is that they are online algorithms, i.e. they
enhance speech signals frame by frame in a sequence. This
makes them applicable in real time scenarios like telephony.

These algorithms, however, are intrinsically not able to deal
with non-stationary noise. Three out of the four categories of
classical algorithms (spectral subtraction, Wiener filtering and
statistical-model-based) rely on the assumption that the noise is
stationary. They model noise as a single spectral profile, or use
a single Speech-to-Noise Ratio (SNR) in enhancing different
noisy frames. However, common noises like typing on a com-
puter keyboard during video chatting, or background speech in
teleconferencing are non-stationary.
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Figure 1: Comparison of noise models. (a) A spectrogram of
20 frames of computer keyboard noise. (b) Classical speech
enhancement algorithms like spectral subtraction model noise
with a single spectrum, e.g. the average spectrum. (c) Non-
negative spectrogram decomposition uses a dictionary (multiple
basis spectra). The latter is suitable for non-stationary noise.

These kinds of noise cannot be well represented by a sin-
gle spectral profile and the SNR varies significantly over time.
The category of subspace algorithms are theoretically able to
model non-stationary noise using a high rank noise subspace.
However, the assumption of orthogonality between the signal
subspace and the noise subspace hinders noise suppression [1].

In [6], we proposed a source separation algorithm based
on non-negative spectrogram decomposition, and applied it to
speech enhancement in non-stationary environments. This al-
gorithm pre-learns a noise model from noise-only excerpts be-
forehand, and separates noisy speech in an online fashion.

In this paper, we further this idea by explicitly modeling
the tradeoff between noise reduction and speech distortion. We
control this tradeoff through a single parameter. We also com-
pare the proposed algorithm with four categories of classical
speech enhancement algorithms. We show that the proposed al-
gorithm achieves significantly better results in terms of both ob-
jective speech quality metrics as well as source separation met-
rics, in non-stationary noise environments with various SNRs.

2. Non-negative spectrogram
decomposition

Non-negative spectrogram decomposition has been quite suc-
cessful in modeling non-stationary sound sources [7]. The ba-
sic idea is to represent the spectra in a sound spectrogram as
convex combinations of several basis spectra forming a dictio-
nary. In the language of Probabilistic Latent Component Anal-
ysis (PLCA) [7], it can be written as:

Pt(f) ≈
∑
z

P (f |z)Pt(z) (1)

where Pt(f) represents the normalized magnitude spectrum
at frame t, which is viewed as a probability distribution over



Figure 2: Illustration of semi-supervised source separation,
based on non-negative spectrogram decomposition. During sep-
aration, the noise dictionary is fixed as what was trained, while
the speech dictionary and activation weights are estimated.

frequency. P (f |z) is a basis spectrum (component z) of the
dictionary, and Pt(z) is its activation weight at time t. This
decomposition is achieved by minimizing the KL divergence
d(Pt(f)||Qt(f)) between the input spectra Pt(f) and the re-
constructed spectra Qt(f) =

∑
z P (f |z)Pt(z). All these dis-

tributions are discrete.
While the activation weights obtained from the decompo-

sition might be different for different instances of the same
source, the dictionary models invariant characteristics. Differ-
ent spectral shapes can be approximated by different convex
combinations of the dictionary basis spectra, making the dictio-
nary suitable for modeling non-stationary sound sources. Figure
1 compares spectral subtraction and a non-negative spectrogram
decomposition when modeling non-stationary noise.

Non-negative spectrogram decomposition has been suc-
cessfully applied to source separation [8]. Applying it to speech
enhancement where speech and noise are the sources, the idea is
to first learn source dictionaries by decomposing clean training
source excerpts using Eq. (1). The first row in Figure 2 shows
the training process of the noise dictionary. The speech dictio-
nary can be learned in the same way if speech-only excerpts are
available. Now for each time frame of the noisy speech, we
apply and fix these pre-learned dictionaries, and decompose its
magnitude spectrum Pt(f) as:

Pt(f) ≈
∑

z∈S∪N

P (f |z)Pt(z) (2)

where P (f |z) for z ∈ S represents the speech dictionary, and
for z ∈ N represents the noise dictionary. The enhanced speech
spectrum can be obtained by

∑
z∈S P (f |z)Pt(z).

If both the speech and noise dictionaries are pre-trained us-
ing Eq. (1) with clean source excerpts, then only the activation
weights Pt(z) need to be estimated in Eq. (2). This is called su-
pervised separation [8]. In this case, Eq. (2), can be performed
in each frame t independently, hence the algorithm is online.

However, speech-only training excerpts are often not avail-
able, as assumed in classical speech enhancement algorithms.
In this case, only the noise dictionary can be trained beforehand,
while the speech dictionary as well as the activation weights
need to be estimated during the decomposition in Eq. (2). This
is called semi-supervised separation [8], as shown in Figure 2.
Existing algorithms of this type [8, 9] cannot be performed on-
line, since the estimation of the speech dictionary needs to ac-
cess the whole spectrogram of the noisy speech.

Recently, researchers have proposed several online algo-
rithms [10, 11, 12] for dictionary learning, from a large amount

of data, which would be restrictive to do offline due to the mem-
ory and computational requirements. However, they are not
suitable for learning the speech dictionary in real-time semi-
supervised source separation. This is because they are designed
to learn a good dictionary only after going through the entire
data set so that they can reflect the entire data. Applying them
to our situation, the intermediate speech dictionary estimated at
frame t is not necessarily good enough to explain and separate
the present frame. In fact, with these approaches, even the final
dictionary learned after processing all the inputs once is often
not good enough. It has been shown that cycling over the in-
puts several times and randomly permuting them at each cycle
significantly improves the results [10, 11, 12].

3. The proposed algorithm
In [6], we proposed an online semi-supervised source separa-
tion algorithm based on the idea of Eq. (2). Applying it to
speech enhancement, we train the noise dictionary using noise-
only excerpts beforehand. For each noisy speech frame, we first
perform Voice Activity Detection (VAD). If the frame contains
prominent speech, we estimate and keep updating the speech
dictionary while enhancing this frame. Otherwise, we only en-
hance the frame but keep the speech dictionary unchanged.

To do VAD on each frame, we decompose its spectrum us-
ing Eq. (1) with the pre-trained noise dictionary fixed and only
estimate the activation weights. If the reconstruction error is
smaller than a threshold, then it means the noise dictionary itself
can explain the frame well enough, indicating that there is no
prominent speech signals. In this case, we perform supervised
separation on this frame, i.e. we decompose this frame using
Eq. (2) with the noise dictionary fixed as what was pre-trained,
and the speech dictionary fixed as what has been updated so far.

If the decomposition error is larger than the threshold, then
the noise dictionary itself is not enough to explain the frame,
hence speech signals are probably present. In this case, we per-
form semi-supervised separation in this frame, i.e. besides en-
hancing the speech signals, the speech dictionary is also esti-
mated. We achieve this by decomposing the current frame to-
gether with a weighted buffer of some previous frames that are
classified as having speech signals. Decomposing the current
frame gives us the separation of speech and noise in the frame,
while decomposing buffer frames provides us a constraint on
the speech dictionary to prevent overfitting. Mathematically,
we are solving the following optimization problem:

argmin
P (f|z) for z∈S

Pt(z) for z∈S∪N

d(Pt(f)||Qt(f)) +
α

L

∑
s∈B

d(Ps(f)||Qs(f))

(3)
where B represents the set of the L buffer frames; α is the trade-
off between the decomposition of the current frame t and the
decomposition of buffer frames. This optimization problem can
be solved by the Expectation-Maximization (EM) algorithm,
which results in the following update equations:

E : Ps(z|f) = 1
C1

Ps(z)P (f |z), for s ∈ B ∪ {t} (4)

M : P (f |z) = 1
C2

∑
s∈B∪{t} VfsPs(z|f), for z ∈ S (5)

Pt(z) =
1
C3

∑
f VftPt(z|f), for z ∈ S ∪ N (6)

where Vft is the input spectrum of the current frame t; Vfs for
s ∈ B are input spectra of buffer frames weighted by α/L; C1,
C2 and C3 are normalization factors for these distributions.

This algorithm can be thought as a block-wise processing
version (with overlaps) of the offline PLCA in Eq. (2), but



with different emphasis on the current frame and the buffer
frames. Furthermore, the activation weights of the buffer frames
are fixed as what has been estimated when decomposing these
buffer frames before, instead of being estimated in Eq. (2).

4. Tradeoff between noise reduction and
speech distortion

Speech enhancement algorithms often face the tradeoff between
noise reduction and speech distortion [1]. In the proposed al-
gorithm, the tradeoff is determined by the speech dictionary,
because the enhanced speech is obtained as a convex combina-
tion of its basis spectra. Ideally, the speech dictionary should
contain basis spectra whose convex hull can only cover speech
spectra but not noise spectra. In practice, however, speech and
noise often share some similar spectra (e.g. speech fricatives
and some keyboard noise). Therefore, if the speech dictionary
is very restrictive to avoid covering noise-like spectra, the en-
hanced speech might be noise-free, but severely distorted. On
the other hand, if the speech dictionary is very broad to cover
all possible speech spectra, the enhanced speech might not be
distorted, but noise reduction might not be adequate as well.

In the proposed algorithm, the speech dictionary is es-
timated using the EM algorithm when separating the noisy
speech instead of being pre-learned from speech-only excerpts.
This makes it easier to bias to one of the two cases. In this
section, we explore controlling the speech dictionary through a
prior during the EM iterations. The strength of the prior controls
the tradeoff between noise reduction and speech distortion.

Each basis spectrum P (t)(f |z) of the speech dictionary at
frame t is a discrete distribution. Since the Dirichlet distribution
is the conjugate prior distribution of the discrete distribution, it
can be used to impose priors on the dictionary. The Dirichlet
distribution is defined by a set of positive and real hyperparam-
eters, each of which corresponds to an element of the discrete
distribution. We set these parameters as γP (t−1)(f |z), i.e. the
basis spectrum of the speech dictionary estimated at frame t−1,
scaled by a positive number γ. Then the priors for all the basis
spectra Λ

(t)
f at time t are:

P (Λ
(t)
f ) ∝

∏
z

∏
f

P (f |z)γP
(t−1)(f|z) (7)

The idea of this prior is intuitive. Since the speech signals
do not change much over two adjacent time frames t − 1 and
t, the two underlying speech dictionaries are likely to be very
similar. Through the hyperparameter, the estimated speech dic-
tionary P (t−1)(f |z) at frame t − 1 serves as an exemplar for
the to-be-estimated speech dictionary P (t)(f |z) at frame t. In
this way, the estimation of P (t)(f |z) is guided, which avoids it
being trapped in local minima in early iterations. In addition,
the information obtained at frame t − 1 is passed to frame t,
which speeds up the convergence of the iterations at frame t.

With this prior, the EM algorithm remains the same except
that Eq. (5) needs to be modified as:

P (f |z) = (1− β)

∑
s∈B∪{t} VfsPs(z|f)

C2
+ βP (t−1)(f |z)

(8)
which is a convex combination of two terms through β ∈ [0, 1].
The first term is a scaled version of the right hand side of Eq.
(5), which is resulted from processing the t-th frame, and can
be viewed as the likelihood part. The second term is a scaled
version of the basis spectrum estimated in frame t − 1, which

is the prior part. The scaling parameter γ is absorbed into β,
where γ = 0 implies β = 0 and γ → ∞ implies β → 1.

We linearly decrease β from 1 to 0 throughout the EM iter-
ations. This is intuitive, as in the early iterations the estimates
resulted from the likelihood part are noisy and a stronger prior
to guide the optimization process is favored. This avoids the
estimates being trapped to far-away local optima. Gradually, as
the likelihood estimates are localized to some close local op-
tima, the prior needs to be switched off to let the estimates be
freely tuned to fit the current frame t. We denote the number of
iterations that β > 0 by τ , which controls the speed at which
the prior is decreased, hence controls the overall strength of the
prior. When τ = 0, no prior is imposed in any iteration and the
speech dictionary is always randomly initialized. When τ = 1,
the prior only affects the first iteration, i.e. the speech dictionary
in the current frame is initialized as the one estimated in the pre-
vious frame. When τ > 1, the initialization is the same as when
τ = 1, and the prior will also affect following EM iterations in
Eq. (8) until β vanishes. With the increase of the prior strength,
the estimated speech dictionary will be more restrictive, leading
to better noise reduction but more speech distortion.

5. Experiments
We evaluate the proposed algorithm using 300 noisy speech
files, about 1.25 hours long in total. These files are obtained
by adding clean speech files with noise-only files in five SNR
conditions: -10dB, -5dB, 0dB, 5dB and 10dB. The clean speech
files are the full speech corpus in the NOIZEUS dataset [1],
which has thirty short English sentences spoken by three fe-
male and three male speakers. We concatenate all sentences
from the same speaker into one long sentence, resulting in six
long sentences, each of which is about fifteen seconds long. We
collected ten types of noise, including birds, casino, cicadas,
computer keyboard, eating chips, frogs, jungle, machine guns,
motorcycles and ocean. Some are more stationary, e.g. cicadas
and ocean noise, while others are very non-stationary, e.g. birds
and computer keyboard noise. Each noise is at least one minute
long. The first twenty seconds are used to train the noise dictio-
nary beforehand. The rest is used to generate noisy speech files.
The sampling rate of all the files is 16kHz.

In the proposed algorithm, we segment each noisy speech
file into frames of 64ms with 48ms overlap. We set the speech
dictionary size as 20, since we find it is enough to get a percep-
tually good reconstruction of the clean speech files. We choose
the noise dictionary size from {1, 2, 5, 10, 20, 50, 100, 200},
according to the complexity of the noise. We set the buffer size
L to 60 frames, and choose the buffer tradeoff factor α from
{1, 2, · · · , 20} the one that achieves the best enhancement re-
sult in the condition of SNR of 0dB for each noise. The number
of EM iterations in each frame is set to 20, which almost always
assures convergence in our experiments. It takes about 25 sec-
onds to denoise each file (about 15 seconds long) in a Matlab
implementation in a computer with a 4-core 2.13GHz CPU.

We compare the proposed algorithm with four classical
speech enhancement algorithms: spectral subtraction (MB) [2],
Wiener filtering (Wiener-as) [3], statistical-model-based (log-
MMSE) [4] and subspace algorithm (KLT) [5]. We use Loizou’s
implementations of these algorithms, as provided in [1]. To
make comparisons fair, noise models of these algorithms are
also learned from the twenty seconds noise training excerpts.

We use two kinds of evaluation metrics. The first kind
is PESQ [13], which is a broadly used objective speech qual-
ity metric. It ranges from 0.5 to 4.5, with a larger value for
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Figure 3: Comparison of the proposed algorithm as the prior
ramp length τ varies, with four classical algorithms.

better quality. The second kind is BSS-EVAL [14], which is
broadly used in source separation. It has three metrics. Source-
to-Interference Ratio (SIR) reflects noise reduction, Source-to-
Artifacts Ratio (SAR) reflects artifacts introduced by the separa-
tion process, and Source-to-Distortion Ratio (SDR) reflects the
overall separation quality. For all three metrics, larger values
mean better quality. Note that speech distortion in the speech
enhancement literature is actually reflected by SAR, while SDR
accounts for both noise reduction and speech distortion.

Figure 3 shows the average results of the proposed algo-
rithm and classical algorithms for various SNR settings1. It can
be seen that in terms of both PESQ and SDR, the proposed al-
gorithm with different prior ramp length parameter τ achieves
significantly better results than all the four classical algorithms
in most SNR settings. The lower the SNR is, the larger the
differences are. This suggests that the proposed algorithm is es-
pecially suitable to deal with non-stationary noise in low SNR
settings. When SNR is 10dB, the performance of proposed
algorithm varies in a large range with different τ parameters.
With the increase of τ (hence increase of the prior strength),
the performance gets worse, and finally worse than some of the
classical algorithms. The reason is that when the mixture con-
tains little noise, the speech dictionary estimated purely from
the likelihood part in Eq. (8) is good enough, while a too strong
prior prevents it achieving this good estimate.

Figure 4 shows the influence of the prior ramp length to
the separation results in the 0dB SNR condition. It can be seen
that the overall separation result SDR does not change signif-
icantly with τ , although the highest value 6.3dB is achieved
when τ = 5. However, a clear tradeoff between SIR and SAR
is shown. With the increase of τ , SIR significantly increases
from 9.3dB to 17.4dB, while SAR significantly decreases from
9.6dB to 6.6dB. A higher SIR indicates better noise reduction
and a higher SAR indicates less speech distortion. It is useful to
see that the tradeoff can be controlled by the single parameter
τ . In practice, τ could be implemented as a knob that users can
tune according to their own preferences in real time.

1Audio examples can be found at http://www.cs.
northwestern.edu/˜zdu459/is2011/examples.html.
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Figure 4: The tradeoff between noise reduction (SIR) and arti-
facts introduction (SAR) as the prior ramp length τ varies.

6. Conclusions
In this paper, we presented a novel speech enhancement al-
gorithm based on non-negative spectrogram decomposition for
non-stationary noise environments. Like typical denoising al-
gorithms, the proposed approach also possesses the properties
of “requiring a pre-training of only the noise model” and “work-
ing online”. Experiments show the superiority of the proposed
algorithm over four classical algorithms in non-stationary envi-
ronments with different SNRs.
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