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ABSTRACT

Music semantic annotation aims to automatically annotate a
music signal with a set of semantic labels (words or tags).
Existing methods on music semantic annotation usually take
it as a multi-label binary classification problem, and model
each semantic label individually while ignoring their rela-
tionships. However, there are usually strong correlations
between some labels. Intuitively, investigating this corre-
lation can be helpful to improve the overall annotation per-
formance. In this paper, we report our attempts to collective
music semantic annotation, which not only builds a model
for each semantic label, but also builds models for the pairs
of labels that have significant correlations. Two methods
are exploited in this paper, one based on a generative model
(Gaussian Mixture Model), and another based on a discrim-
inative model (Conditional Random Field). Experiments
show slight but consistent improvement in terms of preci-
sion and recall, compared with the individual-label model-
ing methods.

1 INTRODUCTION

Semantic annotation of music signals have become an im-
portant direction in music information retrieval. With music
annotation approaches, a music signal is associated with a
set of semantic labels (text, words), which is a more com-
pact and efficient representation than the raw audio or low
level features. It can also potentially facilitate a number of
music applications, such as music retrieval and recommen-
dation, since it is more natural for a user to describe a song
by semantic words, and it is more flexible to measure music
similarities with vectors of semantic labels.

Several methods have been proposed for automatic mu-
sic semantic annotation, which basically can be classified
into two categories: non-parametric and parametric. Non-
parametric methods model the text-audio relations implic-
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itly. For example, Slaney [10] created separate hierarchi-
cal models in the acoustic and text spaces and then linked
the two spaces for annotation and retrieval. Cano and Kop-
penberger [2] proposed an approach to predict the semantic
words based on nearest neighbor classification. On the other
hand, parametric methods explicitly model the text-audio re-
lations. For instance, Whitman et al. [14, 13] trained a one-
versus-all discriminative model (a regularized least-square
classifier or a support vector machine) for each word, based
on which the audio frames were classified. Turnbull et al.
[11] built a generative model for each semantic word, and
calculated a multinomial distribution over the word vocabu-
lary for each song. Eck et al. [3] used AdaBoost to predict
the strength of the occurrence of each social tag (a word) on
a large audio data set.

The methods abovementioned achieve good results by
modeling the text-audio relations, however, they share two
drawbacks. First, there lacks of a taxonomy to organize
the semantic labels. Music has a number of important as-
pects affecting music perception and music similarity, such
as genre, instrumentation, emotion, and tempo, etc. The
classification or detection of these aspects, were also inves-
tigated in many previous methods [12, 4, 8, 9]. Semantic
labels used for music annotation can be also naturally di-
vided into groups corresponding to these aspects. However,
although most of the annotation methods use a rather large
semantic vocabulary that covers almost all the aspects, the
words are not structurally organized. One consequence is
that they cannot make sure that a song is annotated from all
the aspects. For example, Turnbull et al. [11] calculated the
posterior probability for each word in the vocabulary given a
song, and selected the A (a constant) words with the largest
posterior probability to annotate the song. Thus, suppose
for some songs, the posterior probabilities of some words
describing genre are larger than those of all the words de-
scribing instrumentation, this may cause the words describ-
ing instrumentation being absent in the annotation.

Second, in the previous methods, semantic labels are mod-
eled individually, that is, the methods only build text-audio



relations, but ignore the text-text relations between two la-
bels. However, some labels do have strong correlations, and
this information can be investigated to improve annotation
schemes. For example, “hard rock” and “electronic guitar”
tend to co-occur in the annotations of a song, while “happy”
and “minor key”, “fast tempo” and “gloomy” tend rarely to
co-occur. Using the text-text relation information, strong
evidence for the occurrence of “hard rock” may help to pre-
dict the presence of “electronic guitar”. On the other hand,
conflicts in the annotated labels such as the co-occurrence
of “fast tempo” and “gloomy”, which may happen using the
individually annotation methods, could be mostly avoided
by employing the text-text correlation.

To address the two issues above, this paper divides the
semantic vocabulary into a number of categories, and pro-
poses two collective annotation methods by exploiting the
correlations within label pairs. Specifically, 50 web-parsed
semantic labels are used to form the vocabulary, and are
divided into 10 categories, each of which describes an as-
pect of music attributes, including genre, instrumentation,
texture, vocal, arousal, affectivity, tempo, rhythm, tonality
and production process. We also pose the restriction that
the obtained annotation should contain labels from all the
categories. In order to estimate the text-text relations, the
normalized mutual information (NormMI) between the la-
bels in the vocabulary is calculated. The label pairs whose
NormMI values are larger than a threshold are selected to
be modeled. Two methods are then exploited to integrate
correlation modeling: one is a generative method, in which
each selected label pair is modeled by a Gaussian Mixture
Model (GMM); the other is a discriminative method, which
is based on Conditional Random Field (CRF).

The rest of the paper is organized as follows: Section 2
describes the semantic vocabulary and the selection process
of important word pairs. Section 3 describes audio feature
extraction. The two proposed annotation methods are pre-
sented in Section 4. Section 5 presents the experimental re-
sults, and Section 6 concludes this paper.

2 SEMANTIC VOCABULARY

A vocabulary lists all the labels that can be used for semantic
annotation. Currently there is not a standard vocabulary, and
most researchers build their own vocabularies. Cano and
Koppenberger [2] used the taxonomy provided by Word-
Net 1 . Whitman and Rifkin [14] extracted about 700 words
from web documents associated with artists. Turnbull et al.
[11] extracted 135 musically relevant words spanning six
semantic categories from song reviews. These vocabular-
ies are usually large enough to cover all the aspects of mu-
sic. However, due to the large vocabulary, it is usually hard
to avoid preference over words when acquiring the ground

1 http://wordnet.princeton.edu/

Category Words Num
Genre Blues, Country, Electronica, Folk, 1-2

Funk, Gospel, HardRock, Jazz,
Pop, Punk, Rap, R&b, Rock-roll,
SoftRock

Instrument Acoustic guitar, Acoustic piano, 1-5
Bass, Drum, Electric guitar,
Electric piano, Harmonica, Horn,
Organ, Percussion, Sax, String

Texture Acoustic, Electric, Synthetic 1-2
Vocal Group, Male, Female, No 1-2
Affective Positive, Neutral, Negative 1
Arousal Strong, Middle, Weak 1
Rhythm Strong, Middle, Weak 1
Tempo Fast, Moderato, Slow 1
Tonality Major, Mixed, Minor 1
Production Studio, Live 1

Table 1. The vocabulary contains 50 quantized labels span-
ning 10 semantic categories. Each song is annotated using
labels from all the categories with a number limitation.

truth annotations.

In this paper, we build a simplified (but still general) vo-
cabulary from a list of web-parsed musically relevant words.
50 commonly used labels are manually selected and quan-
tized, covering 10 semantic categories (aspects) to describe
characteristics of music signals. Table 1 lists the vocabulary.
Using this vocabulary, each song will be annotated by la-
bels from each category with label number limitations. This
solves the problem that the annotations of a music signal are
missing in some music aspects when the vocabulary is not
organized as categories. It is noticed that multiple labels can
be selected from the categories of genre, instrument, texture
and vocal, while the labels within the other categories are
exclusive with each other.

The same as existing methods, each label can be viewed
as a binary variable in modeling and annotation. As men-
tioned previously, some labels have strong relations: posi-
tive or negative correlations. For example, the labels within
some categories (e.g. Rhythm and Tempo) have negative
correlations and are exclusive with each other. Moreover,
some labels from different categories may have positive or
negative correlations. For example, “Genre.HardRock” and
“Arousal.Strong” tend to co-occur, while “Tonality.Major”
and “Affective.Negative” tend rarely to co-occur.

The normalized mutual information (NormMI) is used to
measure the correlations of each label pair (X, Y ) as

NormMI(X, Y ) =
I(X, Y )

min{H(X),H(Y )} (1)



Word pair NormMI
(Production.Live, Production.Studio) 1.00
(Vocal.Female, Vocal.Male) 0.79
(Tonality.Major, Tonality.Minor) 0.69
(Tempo.Fast, Tempo.Moderato) 0.62
(Rhythm.Middle, Rhythm.Strong) 0.56
(Genre.Electronica, Texture.Synthetic) 0.25
(Arousal.Weak, Rhythm.Weak) 0.24
(Instrument.AcousticGuitar, Texture.Acoustic) 0.23
(Instrument.Drum, Rhythm.Weak) 0.23
(Genre.HardRock, Instrument.ElectricGuitar) 0.19

Table 2. Selected word pairs and their normalized mutual
information. The label pairs in the first five rows are from
the same semantic category, and those in the last five rows
are from different categories.

where I(X, Y ) is the mutual information between X and Y

I(X, Y ) =
∑

x∈{+1,−1}

∑

y∈{+1,−1}
P (x, y) log

P (x, y)
PX(x)PY (y)

(2)
and H(x) is the entropy of label X defined by

H(X) = −
∑

x∈{+1,−1}
PX(x) log PX(x) (3)

Here +1 and −1 represents the presence and absence of a
label, respectively. The probability PX(x) and PY (y), and
P (X, Y ) can be estimated from a training set.

NormMI(X, Y ) has the following properties:

1. 0 ≤ NormMI(X, Y ) ≤ 1;

2. NormMI(X, Y ) = 0 when X and Y is statistically
independent;

3. NormMI(X, X) = 1.

NormMI considers label correlations only, and is irrelevant
to the distributions of individual labels. The larger NormMI
is, the stronger the correlation is. In our approach, only the
label pairs whose NormMI values are larger than a threshold
are selected to be modeled (see in Section 4). Table 2 lists
some of the selected pairs and their NormMI values.

3 AUDIO FEATURE EXTRACTION

Each song is divided into frames with 20ms length and 10ms
overlap. Tempo and beats are detected, then the song is di-
vided into beat segments. Each segment contains a number
of successive frames. A bag of beat-level feature vectors
are used to represent a song. Each vector contains two sets
of features: timbre features and rhythm features. Beat-level

timbre features are the mean and standard deviation of the
timbre features extracted in each frame. Rhythm features
are extracted from the beat segments.

The reason to use beat-level features is that they are much
more compact than the frame-level features to represent a
song, and hence result in much lower computational com-
plexity. Besides, the beat-level features cover a long period
information, and may represent some high-level music char-
acteristics so that it may be helpful for the annotation task.

3.1 Timbre Features

For each audio frame, three classes of spectral features are
calculated. They are 8-order Mel-frequency cepstral coef-
ficients (MFCCs), spectral shape features and spectral con-
trast features. The spectral shape features, including bright-
ness, bandwidth, rolloff, and spectral flux, are commonly
used in genre classification [12]. The spectral contrast fea-
tures which was originally proposed in [6], are designed to
be a complement of MFCCs on the sub-band information,
and are shown successful in mood classification [8]. These
three classes of features constitute a 47-dimensional vector.
Finally, the mean and standard deviation of the frame-level
timbre features in each beat segment compose the beat-level
timbre feature vector, which is a 94-dimensional vector.

3.2 Rhythm Features

Rhythm is an important aspect of music. In our approach,
a 20-second window (with current beat-segment in the mid-
dle) is used for rhythm feature extraction. Following Lu
et al. [8], eight rhythm features are extracted, including
average tempo, average onset frequency, rhythm regularity,
rhythm contrast, rhythm strength, average drum frequency,
drum amplitude and drum confidence.

In the end, a 102-dimensional (timbre plus rhythm) beat-
level feature vector for each beat segment is extracted. Then
the vectors are normalized to zero mean and unit variance
along each dimension. Principle Component Analysis (PCA)
is further employed to reduce the dimensionality of the fea-
ture vectors to 65, reserving 95% energy.

4 SEMANTIC ANNOTATION

Given a vocabulary V consisting of |V| labels (or words)
wi ∈ V , and a song s represented by a bag of T real-valued
feature vectors X = {x1, · · · ,xT }, the goal of semantic
annotation is to find a set W = {w1, · · · , wA} of A words
describing the song. It is convenient to represent the set W
as an annotation vector y = (y1, ..., y|V|). Here yi is a bi-
nary variable, valued 1 or -1 to represent “presence” or “ab-
sence” of label wi. Therefore, a data set D is a collection of
song-annotation pairs D = {(X1,y1), · · · , (X|D|,y|D|)}.



In general, this annotation problem can be addressed by
Maximum A Posterior (MAP), that is, to choose an annota-
tion vector with maximum posterior: ŷ = arg maxP (y|X )
[11]. In existing methods, the labels are treated independent,
so that the posterior probability of the annotation vector can
be decomposed into the multiplication of the posterior prob-
ability of each label as

P (y|X ) =
|V|∏

i

P (yi|X ) ∝
|V|∏

i

p(X|yi)P (yi) (4)

If further assume that feature vectors x1, · · · ,xT in the bag
X are independent, then

p(X|yi) =
T∏
t

p(xt|yi) (5)

where T is the number of feature vectors in the bag X .
The likelihood p(xt|yi) can be estimated using a paramet-
ric model such as a GMM from the training data. The prior
probability P (yi) can also be estimated or as usual set to a
uniform distribution.

However, as mentioned above, the labels are not indepen-
dent, and we need to consider their correlations. In the fol-
lowing subsections, two approaches are exploited for corre-
lation modeling: a GMM-based method, and a Conditional
Random Field (CRF)-based method.

4.1 The GMM-based method

When the labels are not independent, the joint posterior prob-
ability P (y|X ) cannot be decomposed into single label pos-
teriors. Instead, we approximate it using the multiplication
of single label posteriors and label-pair posteriors.

P (y|X ) ∼
|V|∏

i

P (yi|X )



|E|∏

j

P (ye1
j
, ye2

j
|X )




α

(6)

∝
|V|∏

i

p(X|yi)P (yi)



|E|∏

j

p(X|ye1
j
, ye2

j
)P (ye1

j
, ye2

j
)




α

(7)

where E is the set of the selected label pairs that have large
normalized mutual information; e1

j and e2
j are the two la-

bels in the pair; α is a the trade off between label posteriors
and label pair posteriors. In our experiments it is set to 1
typically.

The likelihood p(X|yi) and p(X|ye1
j
, ye2

j
) can be com-

puted based on Eq.(5), assuming the feature vectors within
a bag are independent. The likelihood of each feature vec-
tor is estimated using a GMM model, where 8 kernels are
arbitrarily selected in this paper.

Although the right part of Eq.(6) is not the exact decom-
position of P (y|X ), it represents the intuitive idea that the
annotation should not only maximize the posterior probabil-
ities of individual words, but should also consider the pos-
teriors of the correlated label pairs.

4.2 The CRF-based method

Conditional Random Field (CRF) was firstly proposed by
Lafferty et al. [7] to segment and label sequence data such as
natural language. It is an undirected graphical model, where
the nodes represent the label variables and the edges repre-
sent the relations between labels. Compared with Hidden
Markov Model (HMM), one advantage of the chain CRF
model is that it relaxes the strong independence assump-
tions. In fact, a general CRF can naturally model arbitrary
dependencies between features and labels. Further, Gham-
rawi and McCallum [5] proposed two multi-label classifi-
cation models based on CRF, which directly parameterized
correlations among labels and features.

Generally, given a sample x and its output label vector y,
using the multi-label classification CRF models, the poste-
rior probability p(y|x) can be written as

p(y|x) =
1

Z(x)
exp

(∑

k

λkfk(x,y) +
∑

l

µlgl(x,y)

)

(8)
where Z(x) is the normalizing factor. fk(x,y) and gl(x,y),
are two predefined real-valued functions, corresponding to a
node and an edge respectively. They are usually referred to
as features of the CRF. In principle, any real-valued func-
tion of sample x and label y can be treated as a feature. For
example, it can be the frequency of a phrase in a text docu-
ment, or one dimension of the beat-level feature in a music
signal. λk and µl are the parameters to be estimated to max-
imize Eq. (8) using training data, where k and l enumerate
the following indexes of features,

k ∈ < ri, yj >: 1 ≤ i ≤ |R|, 1 ≤ j ≤ |Y| (9)

l ∈ < ri, yj , yj′ >: 1 ≤ i ≤ |R|, 1 ≤ j, j′ ≤ |Y| (10)

where R is a set of music characteristics (we do not call
them features in order to avoid confusion with CRF features
like fk and gl above), and ri ∈ R; |Y| is the length of the
label vector, and yj is a label variable. It can be seen that
each feature fk corresponds to a pair consisting of a label
and a characteristic, and each feature gl corresponds to a
triplet consisting of a label pair and a characteristic.

Note that k in Eq.(9) enumerates all the nodes, and l in
Eq.(10) enumerates all the edges. Therefore, Eq. (8) cor-
responds to a full connected graph, where

∑
k λkfk(x,y)

represents the overall potential of nodes, and
∑

l µlgl(x,y)
represents the overall potential of edges. However, in prac-
tice, not all the label pairs have close relations, and we only



% Individual GMM Collective GMM Individual CRF Collective CRF
Overall 60.7 / 61.0 / 60.8 61.2 / 61.0 / 61.1 68.0 / 60.5 / 64.0 68.4 / 61.0 / 64.5
Genre 43.4 / 50.9 / 46.9 44.5 / 50.2 / 47.2 54.2 / 40.9 / 46.6 55.4 / 41.8 / 47.7
Instrument 54.3 / 53.5 / 53.9 54.9 / 53.8 / 54.3 72.8 / 48.4 / 58.1 72.9 / 48.6 / 58.3
Texture 73.2 / 71.8 / 72.5 74.0 / 71.7 / 72.8 75.1 / 71.0 / 73.0 75.2 / 71.0 / 73.1
Vocal 76.5 / 71.3 / 73.8 76.7 / 71.2 / 73.8 80.6 / 84.3 / 82.4 80.6 / 85.4 / 82.9
Affective 46.8 47.5 42.1 43.1
Arousal 56.5 56.6 57.0 58.5
Rhythm 63.0 62.3 64.0 64.5
Tempo 59.2 59.4 63.3 63.0
Tonality 56.9 57.4 60.4 60.1
Production 93.0 93.0 94.5 94.6

Table 3. Average per-category performance in the whole vocabulary and each semantic category. For each item, the three
numbers are arranged in the format “Precision / Recall / F-measure”. Note that for the lower 6 semantic categories, precision,
recall and F-measure are the same, and hence written as one number.

consider those with strong correlations. In this case, the
edges of the graph are sparse. Suppose the number of edges
is E, and all the label variables have C possible values (in
our case, C is 2, representing the presence and absence of
each label.), then the number of parameters to be estimated
in total is |R||Y |C + |R|EC2.

In Eq.(10), the potential of edges are feature-dependent.
It can also be degenerated to feature-independent as

l ∈ < yj , yj′ >: 1 ≤ j, j′ ≤ |Y| (11)

In this case, the number of parameters to be estimated in
total is |R||Y |C + EC2.

In order to reduce the computational complexity, we adopt
the degenerated CRF model, where the edges are feature-
independent, as in Eq.(11). Besides, each song is treated as
a sample, and a 115-dimensional song-level feature vector is
calculated and set as the characteristic set R. It consists of
two parts: a 65-dimensional vector, which is the mean of the
beat-level features, and a 50-dimensional vector, with each
dimension representing the likelihood of the song given an
semantic label in vocabulary, calculated using Eq.(5). The
50-dimensional vector can also be seen as a song represen-
tation in an anchor space [1], where each anchor represents
one of the 50 semantic labels in the vocabulary.

5 EXPERIMENTS

In this section, the two proposed collective annotation meth-
ods are evaluated and compared with two individual anno-
tation methods: the individual GMM-based method with
Eq.(4), and the individual CRF-based method which does
not consider the edges (or label pairs) in the graph. The ex-
perimental data set consists of 4,951 Western popular songs,
each of which was manually annotated with semantic labels
from the vocabulary in Table 1, as described in Section 2.

25% of the songs are randomly selected as the training set
and the left as the test set. For the collective methods, 49
label pairs in total, whose NormMI values in the training set
are larger than 0.1, are selected to be modeled.

The annotation performance is measured from two as-
pects: the category aspect and the song aspect. From the
category aspect, the annotation performances in different
categories are measured. From the song aspect, the aver-
age annotation performance of each song is evaluated. For
both aspects, the average precision, recall and F-measure
are used as evaluation metrics, where F-measure is defined
as

F-measure =
2× precision× recall
(precision + recall)

(12)

Table 3 lists the average per-category performances of
the four methods. It can be seen that the CRF-based meth-
ods outperform the GMM-based methods generally, which
accords with previous experiences that discriminative meth-
ods generally outperform generative methods in classifica-
tion problems. Besides, the collective annotation methods
slightly but consistently improve the performance, compared
with their individual counterpart, both for GMM-based meth-
ods and CRF-based methods. This indicates that the label
pair modeling helps annotatoin in some cases.

Table 4 presents the performances of song annotations,
comparing with four methods. It can be seen that, while the
recalls are similar for all the methods, the precision is im-
proved significantly from the generative models to discrimi-
native models. Besides, the collective methods slightly out-
perform their individual counterparts, which are consistent
with the observations made above.

However, the performance improvements from individ-
ual modeling to collective modeling is not so much. Al-
though the level of improvement accords with the experi-
ments in [5], we still need to further discover reasons and



% Precision Recall F-measure
Individual GMM 60.9 61.4 60.9
Collective GMM 61.4 61.4 61.2
Individual CRF 68.1 60.9 64.0
Collective CRF 68.5 61.3 64.4

Table 4. Performance of song annotation, comparing with
four methods.

exploit solutions. One possible reason may be that, in in-
dividual modeling methods, although each label is modeled
individually, the labels which are “correlated” share many
songs in their training set (since each song has multiple la-
bels). This makes the trained models of “correlated” labels
are also “correlated”, or in other words, the correlation is
implicitly modeled.

6 CONCLUSION

In this paper, we presents our attempts to collective annota-
tion of music signals, which not only models individual se-
mantic labels , but also their correlations. In our approach,
50 musically relevant labels are manually selected for music
annotation, covering 10 semantic aspects of music percep-
tion. Then, normalized mutual information is employed to
measure the correlation between two semantic labels, and
those label pairs with strong correlation are selected and
modeled in two methods, one based on GMM, and the other
based on CRF. Experimental results show slight but consis-
tent improvement compared with individual label modeling
methods.

There is still considerable room to improve the proposed
approach. First, we need further exploit better methods to
model label correlation in order to get higher performance
improvement. Second, we need also exploit better features.
In current approach, only a song-level feature vector is used
for CRF-based methods. How to choose effective song-level
features or to adapt the bag of features to CRF-based meth-
ods is still a challenging task. Finally, we will also try to
apply the obtained annotations in various applications, such
as music similarity measure, music search or music recom-
mendation. We are also like to check the impact of annota-
tion accuracy in these applications.
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