A Data-Driven Methodology for Considering Feasibility and Pairwise Likelihood in Deep Learning Based Guitar Tablature Transcription Systems

Frank Cwitkowitz, Jonathan Driedger, and Zhiyao Duan
Guitar Tablature Transcription

Some Spectral Features (e.g., CQT) → Some Differentiable Model (e.g., CNN) → 6-Hot Vector

Frank Cwitkowitz | fcwitkow@ur.rochester.edu
Guitar Tablature Transcription

6 1-Hot Vectors

Open-String

Silence Class

Fret 1

Fret F

Frank Cwitkowitz | fcwitkow@ur.rochester.edu
Example - TabCNN

6D Softmax Approach

➢ Always generates valid predictions
➢ 6 independent classification tasks
➢ Ignores high correlation of fretting between strings
 o Physical limitations
 o Musical tendencies
The main obstacle for guitar tablature transcription is labeled data!
Symbolic Tablature

➢ Prescriptive playing notation for guitar

➢ Large digital collections available (e.g. DadaGP2)

2Pedro Sarmento et al. "DadaGP: A Dataset of Tokenized GuitarPro Songs for Sequence Models". In: Proceedings of ISMIR. 2021

Frank Cwitkowitz | fcwitkow@ur.rochester.edu
Proposed Methodology

➢ Leverage tablature data
➢ Re-formulate output layer (sigmoid)
➢ Incorporate a novel inhibition loss
 ○ Discourage co-activation of unlikely note pairs
 ○ Informed by pairwise likelihoods estimated from data
Estimating Pairwise Likelihood

➢ Compute frame-level IOU of all string/fret (S/F) pairs
Inhibition Loss

\[w(c_i, c_j) = (1 - \text{IoU}(i, j))^b \]

Estimated likelihood for S/F \(i \) and S/F \(j \).
Inhibition Loss

\[w(c_i, c_j) = (1 - IoU(i, j))^b \]

Boosting parameter to relax inhibition.
Inhibition Loss

\[w(c_i, c_j) = (1 - IoU(i, j))^b \]

Inhibition weight for S/F \(i \) and S/F \(j \).
Inhibition Loss

\[w(c_i, c_j) = (1 - IoU(i, j))^b \]

\[L_{inh} = \frac{1}{2N} \sum_{n=1}^{N} \sum_{i=1}^{C} \sum_{j=1}^{C} z_{c_i,n}z_{c_j,n}w(c_i, c_j) \]

Total number of frames.
Inhibition Loss

\[w(c_i, c_j) = (1 - IoU(i, j))^b \]

\[L_{inh} = \frac{1}{2N} \sum_{n=1}^{N} \sum_{i=1}^{C} \sum_{j=1}^{C} z_{c_i, n} z_{c_j, n} w(c_i, c_j) \]

Total number of distinct S/F combinations.
Inhibition Loss

\[w(c_i, c_j) = (1 - \text{IoU}(i, j))^b \]

\[L_{inh} = \frac{1}{2N} \sum_{n=1}^{N} \sum_{i=1}^{C} \sum_{j=1}^{C} \mathbb{1}_{c_i,n} \mathbb{1}_{c_j,n} w(c_i, c_j) \]

Activation produced by model for S/F \(i\) and S/F \(j\) during frame \(n\).
Inhibition Loss

\[w(c_i, c_j) = (1 - \text{IoU}(i, j))^b \]

\[L_{inh} = \frac{1}{2N} \sum_{n=1}^{N} \sum_{i=1}^{C} \sum_{j=1}^{C} z_{c_i,n} z_{c_j,n} w(c_i, c_j) \]

Inhibition weight for S/F \textit{i} and S/F \textit{j}.

Frank Cwitkowitz | fcwitkow@ur.rochester.edu
Experiments

- Employ TabCNN as a baseline (extending the model)
 - 6-fold cross-validation on GuitarSet³
 - Evaluate with same transcription metrics
 - Introduce “distribution” metrics
 - Ablation study w.r.t. the inhibition loss

Discussion

➢ Tablature performance does not increase significantly
 ○ Small size of GuitarSet
 ○ Some label noise in GuitarSet

➢ Distribution of predictions more closely matches DadaGP

Frank Cwitkowitz | fcwitkow@ur.rochester.edu
Summary

- Pairwise likelihoods of S/Fs estimated using DadaGP
- Propose novel inhibition loss incorporating likelihoods
- TabCNN (baseline) augmented with the inhibition loss

All code is available at
https://github.com/cwitkowitz/guitar-transcription-with-inhibition