Overview

- The pairwise likelihoods of string-fret (S/F) combinations are estimated using a large collection of symbolic tablature [1].
- A novel inhibition loss incorporating the estimated likelihoods is proposed for deep learning based models.
- The output layer of a baseline guitar tablature transcription model [2] is re-formulated and augmented with the inhibition loss.

Guitar Tablature Transcription

Generate a 6-hot vector \(y_{i,s} \) for each frame \(i \) in a piece of audio, where \(s \) corresponds to the given fret class \(f \in \{ -1, 0, 1, \ldots, F \} \) for each string \(s \in \{1, \ldots, 6\} \). We use \(c \in \{1, \ldots, C\} \) interchangeably to denote combinations of string and fret (S/F), where \(C = 6 \times (F + 2) \).

\[
\begin{array}{cccccccccccc}
6 & - & E & A & D & G & B & e & E & A & D & G & B & e
\end{array}
\]

Output Layer Formulation

Contemporary tablature transcription models [2, 3] apply the softmax activation across fret classes for each string at the output layer.

\[
L_{CCE} = - \frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{C} \log(y_{i,s,c,n}) + (1 - y_{i,s,c,n}) \log(1 - z_{i,s,n})
\]

This treats transcription as 6 independent classification tasks, ignoring the typically high correlation between the S/F combinations making up a fingering. We re-formulate the output layer using sigmoid activations, allowing us to introduce a novel inhibition loss.

\[
L_{BCE} = - \frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{C} z_{i,s,c,n} \log(y_{i,s,c,n}) + (1 - z_{i,s,c,n}) \log(1 - y_{i,s,c,n})
\]

Datasets

- Large collection of GuitarPro files featuring tablature for many popular full-length songs.
- Includes artists spanning many musical styles, with a lean toward rock and metal.
- We process all guitar tracks in standard tuning, yielding 39967 pieces of symbolic tablature.

GuitarSet [4]

- Contains roughly 3 hours of acoustic guitar audio with string-level note annotations.
- Features 6 guitarists playing 2 unique interpretations over 30 different chord progressions.

Estimating Pairwise Likelihood

We can estimate the pairwise likelihood of two S/F combinations \(c_i \) and \(c_j \) using an arbitrary collection of symbolic tablature data (e.g., DadaGP [1]). Given the symbolic tablature for a single track, we compute the intersection over union (IoU) of frame-level occurrences for all pairs of S/F combinations.

\[
\text{inter}(i,j) = \sum_{n=1}^{N} t_i \land t_j, \quad \text{union}(i,j) = \sum_{n=1}^{N} t_i \lor t_j
\]

Let \(T'(i,j) \) be the set of tracks where \(c_i \) and \(c_j \) independently, each occur in at least one frame. The IoU of the pair is averaged across these valid tracks.

\[
\text{IoU}(i,j) = \frac{1}{|T'(i,j)|} \sum_{n \in (t_i \land t_j)} \text{inter}(i,j), \quad \text{union}(i,j)
\]

where \(|T'(i,j)| \) is the cardinality of \(T'(i,j) \). Note this is only valid for pairs where \(|T'(i,j)| > 0 \). We set \(\text{IoU}(i,j) = 0 \) for all pairs where \(|T'(i,j)| = 0 \).

Inhibition Loss

We introduce a novel loss term to inhibit the co-activation of unlikely pairs:

\[
L_{inh} = \frac{1}{2N} \sum_{n=1}^{N} \sum_{i=1}^{C} \sum_{j=1}^{C} z_{i,s,c,n} w(c_i, c_j).
\]

The product for every combination of activations is taken and scaled by an inhibition weight, a penalty between 0 and 1 for producing high activations for the combinations in the pair in a single frame. The result is summed over all combinations. We set the inhibition weights to be the complement of the pairwise likelihoods estimated using Equation (4), boosted with parameter \(b \).

\[
w(c_i, c_j) = (1 - \text{IoU}(i,j))^b
\]

Including a scaling term \(A \) for balancing the two terms, the total loss becomes

\[
L_{total} = L_{BCE} + A L_{inh}
\]

Experiments

- Train and evaluate on GuitarSet [4] following 6-fold cross-validation schema [2].
- Experiment with holding out an extra dataset split for validation.
- Experiment with inserting a uni-directional LSTM before the output layer.
- Experiment with variations of the proposed output layer formulation.
- Adopt the metrics proposed in [2], but average across tracks, then folds.
- Compute inhibition losses \(L_{inh} = b \) and \(L_{inh}^+ = b \) on final predictions.
- Count number of duplicate pitch \(E_{dp} \) and false alarm \(E_{fa} \) errors.

Acknowledgements & References

This work is partially funded by National Science Foundation grants IIS-1446104 and DGE-1922591. All of the code is available at https://github.com/air-audio/uitar-transcription-with-inhibition.